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Abstract

The study of laser-cooled two-electron atoms is one of the most interesting research
fields in atomic physics. In particular, the unique characteristics of the metastable
3P2 state of two-electron atoms have recently attracted attention both for their ap-
plications and study of their intrinsic characteristics.
　
In this thesis, I present experiments for studying new aspects of the metastable states
in two-electron atoms. First, unique collisional properties of metastable Yb[3P2]
atoms at ultralow temperatures are revealed in detail. In previous studies, evapo-
rative cooling of metastable atoms in a magnetic trap was unsuccessful in forming
a Bose-Einstein condensate (BEC) due to trap loss caused by strong spin-flip colli-
sion processes. We overcame this difficulty by employing, instead, an optical trap
in which atoms in every magnetic sublevel of the 3P2 state can be trapped. We
successfully achieved a number density of 2 × 1013 cm−3, which is larger than that
achieved in a previous study by an order of three [1], at a temperature of 2 µK
with a phase space density of 0.01. We also measured a large two-body inelastic
collision rate in a far-off-resonance trap, which we interpret as fine-structure chang-
ing collisions in this ultracold temperature regime. Although a recent experiment
with magnetically trapped Ca atoms studied multichannel collisions between 3P2

atoms and discussed the possibility of the fine-structure changing process [2], we
believe that our study is the first definite experimental measurement of this process
between 3P2 atoms.
　
The other important achievement in this study is the successful observation of the
ultranarrow magnetic quadrupole 1S0↔3P2 transition. We first developed a novel
507-nm laser source. By tightly locking the laser frequency to a high-finesse exter-
nal optical cavity, we stabilized the laser frequency and reduced the linewidth to
less than 1 kHz. Using this laser source, we observed the 1S0↔3P2 transition in
Yb bosonic (174Yb) and fermionic (171Yb, 173Yb) isotopes. High-resolution spec-
troscopy of ultracold atoms and BECs was performed using this ultranarrow tran-
sition. The frequency shift and broadening due to the mean field energy of a BEC
was observed. Furthermore, we determined the polarizabilities of all the magnetic
sublevels of the 3P2 state. Using an optical frequency comb, we also measured
the optical frequency of the magnetic-field-insensitive 1S0↔3P2 (m = 0) transition
in 174Yb, which is one of the candidates for next-generation time and frequency
standards [3].
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Chapter 1

Introduction

The technique of laser cooling and trapping of neutral atoms has progressed rapidly in
recent years. One of the major breakthroughs in this field is the achievement of the
Bose-Einstein condensate (BEC) in dilute gasses of alkali metals in 1995 [4, 5, 6]. BEC
has enabled us to study fundamental quantum mechanics experimentally in a macroscopic
system, and thus numerous fascinating experiments have been performed worldwide using
BEC.

At the same time, laser cooled two-electron atoms, including alkaline-earth metals
(e.g., Ca and Sr) and Ytterbium (Yb), have attracted increasing interest in various fields
of atomic physics due to their unique features, which alkali metal atoms do not possess
[7, 8]. In particular, the unique characteristics of metastable 3P2 atoms have recently
attracted attention, both for their applications and for the study of their collisional prop-
erties [9]. These atoms are different from the more commonly studied alkali metal atoms
because collisions between 3P2 atoms are intrinsically anisotropic. Recent theories have
investigated the effects of this anisotropy, including its interplay with magnetic field ef-
fects, which enable novel control of the scattering length [10], and multichannel collisions
due to strong coupling among the partial waves of relative motion [11]. Also, the magnetic
dipole dipole interaction between 3P2 atoms is nine times larger than that between alkali
metal atoms. This has led to theoretical predictions such as novel quantum phases and
use in quantum information systems [12, 13].

On the other hand, studies on extremely narrow optical transitions in two-electron
atoms between the metastable state and the ground state have also progressed rapidly.
For example, in metrology, studies on an ultraprecise atomic clock using such ultranarrow
transitions have been pursued to achieve an uncertainty of 10−16 and beyond with the aim
of producing an optical lattice clock [8]. In quantum information science, an optical two-
level system with large coherence times of the metastable state in two-electron atoms is
useful as a well-defined quantum bit (qubit), which can be easily converted to a flying qubit
of a photon. Sideband cooling using narrow transitions to cool a neutral atom down to the
vibrational ground state of a trap is also possible [14, 15]. In addition, the combination of
the ultranarrow 1S0↔3P2(m = ±2) transition and its Zeeman shift enables ultraprecise
measurement of a magnetic field and high-resolution spatial addressing of atoms, for
example, atoms confined in optical lattice potentials in a magnetic field gradient.
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In this study, I present experiments for studying new aspects of the metastable 3P2

state in two-electron atoms. To study the fascinating possibilities of 3P2 atoms, sev-
eral groups have performed laser cooling and trapping of two-electron atoms in the 3P2

state. For example, in order to investigate unique collisional properties, laser cooling
of metastable Ca[3P2] and Sr[3P2] atoms has previously been performed; however, the
atomic temperature was relatively high (∼ a few millikelvin). In this study, we developed
a new method to obtain ultracold and dense 3P2 atoms in a trap. Using such atoms, we
investigated unique collisional properties in the ultracold temperature regime. As for the
ultranarrow transitions, while previous studies mainly focused on its application to the
next-generation frequency standards, we demonstrated high-resolution spectroscopy of ul-
tracold atoms and BECs using an ultranarrow optical transition in Yb. In the following
text, I will briefly introduce the experiments performed in this work.

Unique collisional properties of metastable Yb[3P2] atoms at ultracold tem-
peratures

First, unique collisional properties of metastable Yb[3P2] atoms at ultralow temperatures
are revealed in detail. Previously, several laboratories have realized laser cooling and
trapping of metastable two-electron atoms. Ca and Sr atoms decaying to the 3P2 state
from the 1P1 state, which is the upper state in the 1S0↔1P1 magneto-optical trap (MOT)
transition, have been successfully trapped in a magnetic trap [16, 17, 1]. Also, a MOT
operating on the 3P2↔3D3 transition has been used to load a magnetic trap [18]. In spite
of the success of these approaches, evaporative cooling of 3P2 atoms in a magnetic trap to
realize a BEC was unsuccessful due to trap loss caused by strong multichannel collisional
processes. More recently, a similar large inelastic collision rate in Ca[3P2, mJ=2] was
observed at temperatures of a few millikelvin [2].

The loss induced by multichannel collisions in a magnetic trap can be overcome by
employing an optical far-off-resonance trap (FORT) instead of a magnetic trap. The
FORT wavelength can be chosen so that atoms in every magnetic sublevel of the 3P2 state
can be trapped with the same strength. As a result, although multichannel collisions can
still occur, they will not lead to trap loss. In this study, we developed a new method
to prepare ultracold and dense 3P2 atoms in a FORT. Unlike previous methods, we first
trapped Yb[1S0] atoms in a FORT and performed evaporative cooling. Then, we optically
excited Yb[1S0] to the 3P2 state to obtain ultracold trapped Yb[3P2] atoms. Using this
method, we achieved a number density of 2 × 1013 cm−3 at a temperature of 2 µK with
a phase space density (PSD) of 0.01. Our newly achieved number density is larger than
that achieved in a previous study by an order of three [1].

While the trap loss due to the multichannel collisions must be suppressed in our FORT,
we still observed a large two-body inelastic collision rate. Thus, we deduce the existence
of a different inelastic collisional process, which we interpret as fine-structure changing
collisions in this ultracold temperature regime. Although fine-structure changing inelastic
collisional properties have previously been investigated for Mg[3Pj], O[3Pj], Sc[2Dj], and
Ti[3Fj] colliding with closed-shell atoms [19, 20, 21, 22, 23], they had not been seen in
collisions between 3P2 atoms. While a recent experiment on magnetically trapped Ca
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atoms studied multichannel collisions between 3P2 atoms and discussed the possibility
of the fine-structure changing process [2], we believe that our study is the first definite
experimental measurement of this process between 3P2 atoms.

High-resolution spectroscopy of ultracold atoms and BECs using the ultranar-
row 1S0↔3P2 transition

The other important achievement in this study is the successful observation of the ultra-
narrow magnetic quadrupole 1S0 ↔ 3P2 transition (507 nm) in Yb bosonic (174Yb) and
fermionic (171Yb, 173Yb) isotopes.

We first developed a 507-nm ultranarrow-linewidth laser system, which consists of an
extended cavity laser diode, a tapered amplifier, and a periodically poled lithium niobate
nonlinear crystal. In order to observe the ultranarrow transition, the laser linewidth was
reduced below 1 kHz by tightly locking it to a high-finesse optical cavity. Due to its
ultranarrow linewidth, this transition had never been observed prior to this study. Hence,
we also estimated the transition frequency using an optical frequency comb. Using the
developed laser system and the estimated transition frequency, we observed the 1S0↔3P2

transition for the first time.
High-resolution spectroscopy of ultracold atoms and BECs was demonstrated using

this transition. The polarizabilities of all magnetic sublevels of the 3P2 state were de-
termined with high precision. Using an optical frequency comb, we also measured the
frequency of the magnetic-field-insensitive 1S0 ↔ 3P2 (m = 0) transition in 174Yb, which
is one of the candidates for next-generation atomic frequency standards [3]. However,
the highlight of this study is the detection of the mean field shift of a BEC using this
ultranarrow optical transition. We observed, not only the large mean field shift in a BEC,
but also the change in the lineshape, which reflects the density distribution of a BEC in
a trap. As a result, we successfully determined a12 (the scattering length between atoms
in the 1S0 state and the 3P2 state) from the observed spectrum. Furthermore, we also
performed spectroscopy of condensates in 1D optical lattice potentials and observed the
mean field shift due to on-site interaction at each site.

Thesis outline

• Chapter 2: We will introduce all important aspects of laser cooling and trapping of
Yb atoms in this study. Details about laser systems will be also presented.

• Chapter 3: This chapter deals with the ultranarrow laser system developed in this
study in order to observe the ultranarrow 1S0↔3P2 transition.

• Chapter 4: Overview of the excitation of atoms by a laser field such as E1, E2, and
M2 transitions. All of these transitions play a key role in this study. The calculation
of the light shift is also presented.

• Chapter 5: The spectral shifts and broadenings that we have to consider when
analyzing the data obtained in this study are discussed.
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• Chapter 6: Optical trapping of 3P2 atoms and investigation of unique collisional
properties are presented. A new method involving the trapping of atoms in a FORT
and estimation of elastic and inelastic collision rate constants are discussed.

• Chapter 7: Details about our first observation of the 1S0↔3P2 transition are de-
scribed. Estimation of the resonance frequency and measurement and control of the
polarizability of the 3P2 state are also included.

• Chapter 8: Spectroscopy of a BEC using the ultranarrow 1S0↔3P2 transition is
reported. The detected mean field shift will be shown and analyzed in detail. In
addition, the spectroscopy of condensates in 1D optical lattice potentials is reported.

• Chapter 9: This chapter presents the frequency measurement of the 1S0↔3P2(m =
0) “clock” transition. Some basic properties of our frequency comb are described.

• Chapter 10: A summary of this study and some future prospects are presented.

• Appendices: Short but important topics related to this study are briefly summa-
rized, including the estimation of the magic wavelength of the 3P2 state, a novel laser
system based on narrow iodine spectra, and a new stable laser system to obtain the
MOT beam.
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Chapter 2

Laser cooling and trapping of neutral
Yb atoms

In this Chapter, I will present details of laser cooling and trapping of Yb atoms. First,
general properties of Yb atoms will be introduced. Then, basic characteristics of our
Zeeman slower system, MOT, FORT, and imaging system will be presented. Finally,
details about laser systems will be described.

2.1 General properties of neutral Yb atoms

Laser cooling and trapping of Yb atoms have been yielding a fundamental progress in
atomic physics. After the first realization of a BEC of 174Yb in 2003, BECs of 176Yb
and 170Yb and Fermi degeneracies of 173Yb and 171Yb have been successfully realized
in our laboratory [24, 25, 26, 27]. As shown in Table 2.1, rich kind of stable isotopes
of Yb (five bosons and two fermions) enables a variety of mixtures such as Bose-Bose,
Bose-Fermi and Fermi-Fermi gasses and even mixtures of three species. Seven other
unstable isotopes are also known. The scattering length which governs atomic collisions
at ultracold temperatures has been precisely measured via photoassociation spectroscopy
[28, 29, 30] and estimated for all pairs of isotopes using the mass scaling law [31]. The
other significant feature of Yb is the existence of ultranarrow optical transitions. The so-
called “clock transition” (1S0↔3P0) is one of the primary candidates of next-generation
frequency standards and ultraprecise atomic clocks whose stability has already reached
3×10−16 [32]. The clock transition has been observed in fermionic isotopes (171Yb and
173Yb) and a bosonic isotope (174Yb) [33, 34, 35]. Novel sideband cooling technique using
the clock transition in fermionic isotopes has been also proposed [15]. In addition, Yb is
regarded as one of the good candidates for the test of time-reversal symmetry violation
[36] and the study of atomic parity nonconservation [37].

Yb is a rare earth metal. The ground state electronic configuration1 is [Xe]4f 146s2. Its
atomic mass is 173.04. The melting point and the boiling point are 1097 K (824 ◦C) and
1700 K (1427 ◦C), respectively. At room temperature, Yb is very stable. Because of two

11s22s22p63s23p63d104s24p64d105s25p64f146s2
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valence electrons, the structure of energy levels are similar to that of alkaline-earth metals,
that is to say, Yb has singlet and triplet series in energy levels as shown in Fig.2.1 and 2.2.
Isotope shifts in the 1S0↔1P1 and 1S0↔3P1 transitions are listed in Table 2.2. According
to the calculation in [38], the saturated vapor pressure of Yb is 3×10−21 Torr at room
temperature, which means that there exists no Yb atoms in air at room temperature. We
heat the Yb oven up to 375◦C in the experiment.

Table 2.1: Natural abundance and nuclear spin of Yb [39].

Atomic Mass Natural Abundance (%) Nuclear Spin

174 31.8 0

172 21.9 0

173 16.12 5/2

171 14.3 1/2

176 12.7 0

170 3.05 0

168 0.13 0
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1S0

1P1

399 nm

3P2

3P1

3P0

556 nm

3S1

770 nm 649 nm

3D2

(6s6p)
(5d6s)

(6s7s)

(6s6p)

(6s2)

404 nm

507 nm

5.7 ns

460 ns

877 ns

14 ns

Figure 2.1: Low lying energy levels of Yb

Table 2.2: Yb isotope shifts of the 1S0↔1P1 transition at 399 nm [41] and 1S0↔3P1

transition at 556 nm [42] relative to the resonance frequency of 174Yb.

1S0↔1P1

Atomic Mass Isotope Shift (MHz)

176 −509.3

173(5/2−5/2) −253.4

174 0

173(5/2−3/2) 516.0

172 533.3

173(5/2−7/2) 588.0

171(1/2−3/2) 832.4

171(1/2−1/2) 1153.7

170 1192.4

168 1887.4

1S0↔3P1

Atomic Mass Isotope Shift (MHz)

173(5/2−7/2) −2386

171(1/2→1/2) −2132

176 −955

174 0

172 1000

170 2287

173(5/2−5/2) 2312

168 3655

171(1/2−3/2) 3805

173(5/2−3/2) 3806
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(6s2)1S0 0cm-1

(5d6s)3D2

(5d6s)3D1

(5d6s)3D3

24751.948cm-1
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25270.902cm-1

(5d6s)1D2 27677.665cm-1

(6s7s)3S1
32694.692cm-1

(6s7s)1S0 34350.65cm-1
(6s6d)3D1

(6s6d)3D2

(6s6d)3D3

(6s6d)1D2

(6s8s)3S1

(6s8s)1S0

(6p2)3P0

(6p2)3P1

(6p2)3P2

39808.72cm-1
39838.04cm-1
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Figure 2.2: Energy levels in Yb in the unit of cm−1 [40]. Energy between each levels
and the (6s2)1S0 ground state is reflected as an amplitude of the interval in the vertical
direction. The positions of typical wavelength for a FORT (532nm, 800nm and 1064 nm)
are also shown for the (6s2)1S0 and (6s6p)3P2 states.
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2.2 Laser cooling and imaging of Yb atoms

In this section, each cooling stage from an atomic oven to a BEC will be presented in
detail [43, 44, 7]. We use the 1S0↔1P1 and the 1S0↔3P1 transitions for the Zeeman
slower and MOT transitions, respectively. Important values of these two transitions are
summarized in Table 2.3.

Table 2.3: Important values of cooling transition 1S0↔1P1 and 1S0↔3P1 [40].

1S0↔1P1
1S0↔3P1 Unit

Wavelength (in air) λ 398.8 555.6 nm

Lifetime τ 5.7 877 nsec

Natural linewidth
Γ

2π
=

1

2πτ
27.9 0.181 MHz

Saturation Intensity Isat =
πhc

3λ3τ
57 0.14 mW/cm2

Doppler limit temperature TD =
~Γ
2kB

670 4.35 µK

Doppler limit velocity vD =

√
kBTD

m
18 1.4 cm/sec

g-factor g 1.04 1.49

Absorption cross section σab =
3λ2

2π
76 147 10−15m2

Recoil frequency νR =
~k2

4πm
7.2 3.7 kHz
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Figure 2.3: Schematics of Zeeman slower and MOT laser beams in vacuum chamber.

2.2.1 Zeeman slower

To slow down atoms emitted from a Yb oven at 375 oC, a Zeeman slower system is
used. Basically, the resonance frequency of atoms in an atomic beam is shifted due to
the Doppler effect depending on the atomic velocity. In a Zeeman slower system, such
frequency shifts are compensated by the gradually varied external magnetic field.

There exist two kinds of Zeeman slower configurations which are referred to as the
σ+ and σ− configurations. In the σ+(−) configuration, amplitude of the magnetic field
decreases (increases) from the oven to the MOT region. The important difference between
these two configurations is that the frequency of the slower beam. It is far red-detuned in
case of the σ+ configuration while it is almost resonant in the σ− configuration. The σ+
configuration has an advantage of small leak of the magnetic field into the MOT region.
However, in this work, the MOT transition (1S0↔3P1) is different from the transition
used for the Zeeman slower (1S0↔1P1). In such a case, atoms in a MOT may be blew out
by the slower beam in the σ+ configuration. Thus the σ− configuration is better than
the σ+ one2. The 399 nm slowing laser are detuned by about 500MHz from the resonance
and applied to the atomic beam from the opposite direction as shown in Fig.2.3.

Cleaning of coated windows

Since we irradiate a slowing laser from the opposite direction of the Yb atomic beam,
the input window is gradually coated with Yb atoms. As this coating becomes thick, the
slowing laser is scattered at the window, which leads to decrease of the efficiency of the
Zeeman slower system. To clean up the Yb coating, we have blew away Yb atoms into
the vacuum chamber by irradiating the focused green (532 nm) CW laser3. The intensity
of I∼ 2.5 kW/cm2(P=1 W, ω = 5 µm) is strong enough. This method enables us to
recover the efficiency of the Zeeman slower system without opening the vacuum chamber.

2To overcome this problem, the so-called zero-crossing configuration is available.
3We can also use the green (532 nm) pulsed laser.
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2.2.2 MOT

Atoms slowed by the Zeeman slower system are trapped in a magneto-optical trap (MOT).
A MOT consists with three pairs of two circularly polarized couterpropagating lasers and
the quadrupole magnetic field. We use the narrow 1S0↔3P1 transition for a MOT (λ
= 556 nm, Γ/2π = 181 kHz) whose saturation intensity Isat = 0.14 mW/cm2 and the
Doppler limit temperature TD =4.4 µK (see Table 2.3).

When we load 174Yb atoms in a MOT, detuning and intensity of MOT beams are −1.3
MHz (−7 × Γ/2π) and 45 Isat (' 6 mW/cm2, P=10 mW and ω0 = 1 cm), respectively.
The MOT magnetic field gradient is 1.3 G/cm for x and y direction (2.6 G/cm for z
direction). After about 10 s loading, we can typically collect 2×107 atoms in a MOT.

In order to increase atomic density, to realize better mode matching with a FORT
potential and to carry out the additional cooling, a compressed MOT scheme is used.
After the loading, the magnetic field gradient is increased to 14 G/cm in 200 ms for x and
y direction (28 G/cm for z direction). Then, the intensity of the MOT beam is decreased
to 4 Isat for 100 ms to cool atoms. Detuning of the MOT beam is not changed before and
after the compressed MOT. As a result, just after the transfer of atoms from a MOT to
a FORT, typical number and temperature of atoms are 1×106 and 50 µK, respectively.

2.2.3 Evaporative cooling in a FORT

Since Yb atoms in the ground state do not possess electric spins, the magnetic trap can
not be used as successfully used in typical BEC experiment of alkali metal atoms. Instead,
the optical trap, which is also called a Far Off-Resonance Trap (FORT), is used.

We chose 532 nm as the FORT wavelength for two reasons. One is that, at this
wavelength (532 nm), very high power (∼10 W) and stable lasers are now commercially
available. The second reason is that the theoretical estimation shows that the trap po-
tential made by tightly focused 532 nm laser is deep enough (∼1 mK) to trap cold Yb
atoms in the ground state.

Plain evaporation

Figure 2.4 shows how atoms in a FORT reach thermal equilibrium after the transfer of
atoms from a MOT to a FORT. η = U0/kBT is the ratio of the trap depth U0 and the
temperature of atoms in a trap. kB is the Boltzmann constant.

After the cooling due to plain evaporation in a FORT for about 1.5 s, the system
reaches thermal equilibrium where cooling due to elastic collisions equilibrate with heating
due to inelastic collisions (three body collisions). Under thermal equilibrium, we found
ηeql = 14 for Yb[1S0] which corresponds to γ = σel/σin = 2200 (see section 6.2). Here,
σel and σin are the scattering cross section of elastic and inelastic (three body) collisions.
In general, the condensation by evaporative cooling is thought to be straightforward if
γ > 104 and impossible if γ < 10 [22]. Thus, γ = 2200 of Yb is not bad for us to realize
a BEC by evaporative cooling [7].
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Figure 2.4: Plain evaporation. Temperature of Yb[1S0] atoms and η in a FORT are plotted
as a function of holding time. After the transfer of atoms from a MOT to a FORT, atoms
are cooled by plain evaporation in 1.5 s and then the system reaches thermal equilibrium.

Trap lifetime of atoms in a FORT

Figure 2.5 shows the typical trap lifetime of atoms in a single FORT. Trap depth is about
700 µK and the temperature of atoms is about 50 µK. Non-exponential trap loss up to 1 s
is the three body inelastic trap loss due to the high atomic density just after the transfer
of atoms. The solid line is a fit of the data after 1 s by an exponential function. A trap
lifetime determined by one body collisions (collisions between Yb and a background gas)
is 15 s.

Forced evaporation in a crossed FORT

In order to realize a BEC, increasing an atomic number density is crucial. To this end, we
use a crossed FORT configuration. One of two FORT beams enters the MOT region along
the horizontal direction (perpendicular to the gravity) and the other along the vertical
direction (parallel to the gravity).

First, trap depth of the horizontal and vertical FORT is about 700 µK and 10 µK,
respectively. Thus atoms are trapped mainly in the horizontal FORT at the beginning. As
we decrease the trap depth of the horizontal FORT in order to induce forced evaporative
cooling, atoms gather in the crossed region through elastic collisions. At the same time,
their phase space density increases. Finally, a BEC is achieved. During forced evaporative
cooling for 6 s, trap depth of the vertical FORT is kept constant at 10 µK.
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Figure 2.5: Trap lifetime of atoms in a single FORT. Trap potential is about 700 µK and
the temperature of atoms is about 50 µK. After the inelastic loss due to the three body
collisions up to 1 s, one body collisions govern the trap lifetime. The solid line is a result
of a fit by an exponential function. One body decay time is measured to be 15 s.

Technical issues

In a crossed FORT configuration, two tightly focused FORT beams must be perfectly
crossed at the trap region. However, there is instability of pointing of the FORT beam
due to a heating effect by RF power at an AOM. AOMs are used to control the FORT
power. In order to get rid of this instability, we put a copper plate under the AOM
and flow water inside it. Temperature of the water is stabilized at 15◦C by a chiller. In
addition, we wait for about an hour after starting the time sequence of evaporative cooling
to make everything thermally equilibrium.

In addition, since the FORT beam is tightly focused, it is rather difficult to correctly
guide in a MOT region. Thus when we first find the FORT beam in a MOT region, we
sometimes use the resonant light (399 nm or 556 nm) instead of 532 nm. If the resonant
beam hits the MOT, we can easily recognized it in a CCD image on a TV monitor. Then,
we put the FORT beam in the same optical path. In addition, since the trap depth of
the vertical FORT is shallow, we should use cold atoms (< 10 µK) to align the vertical
FORT.

2.2.4 Absorption imaging

Ultracold atoms and a BEC in a vacuum chamber are observed by absorption imaging.
The imaging laser which is resonant to the strong transition 1S0↔1P1 is irradiated to
an atomic cloud and then detected by a CCD camera after some imaging optics. The
magnification is designed to be 2.25 [45] by using proper achromatizing lenses. Since
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atoms absorb the imaging laser, they can be detected as a shadow on a CCD image
whose intensity and size have information about the number of atoms and their spatial
distribution, respectively.

Number of atoms

The number of atoms N can be derived from a CCD image by using the equation,

N = − tS

σab

∑
i,j

ln
Pi,j −Di,j

Fi,j −Di,j

, (2.1)

where S is the area of each pixel, t is the magnification ratio of the imaging system, σab

is the photon scattering cross section. Pi,j, Fi,j and Di,j are the signal intensity on a
CCD camera at a pixel (i, j) with atoms (Probe), without atoms (Flat) and without both
atoms and probe beam (Dark), respectively. For the closed two-level system, σab is given
by

σab(δ, s) =
3λ2

2π

(
1

1 + (2δτ)2

)(
1

1 + s

)
, (2.2)

where λ is the wavelength of the transition, δ is the detuning of the probe laser and τ is
the lifetime of the excited state4. s is the saturation parameter which is defined by

s =
I

Isat

, Isat =
hπc

3τλ3
, (2.4)

where I is the laser intensity, Isat is the saturation intensity and c is the speed of light.
In our experiment, the laser intensity of a probe beam is much lower than the satura-

tion intensity of the 1S0↔1P1 transition (I < 0.1 Isat for P = 100 µW and ω0 = 1 mm)
and the detuning is zero due to the frequency locking (δ = 0). As a result, the photon
scattering cross section becomes

σab(0, 0) =
3λ2

2π
. (2.5)

Temperature - Time of flight (TOF) technique

Temperature T of atoms can be determined by measuring how fast atomic cloud expands
after turning off the trap potential. Assuming that the initial density distribution and the
velocity distribution of atoms in a trap can be approximated by the Gaussian function and

4Full Width of the Half Maximum (FWHM) of the natural linewidth is given by

δωnat = γ, δνnat =
γ

2π
,

(
γ =

1
τ

)
. (2.3)
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the Maxwell-Boltzmann distribution, respectively, the density distribution after turning
off the trap potential is given by

n(r, t) =
N

(2π)3/2(σ2
0 + σ2

vt
2)3/2

exp

[
− r2

2(σ2
0 + σ2

vt
2)

]
, σv(T ) =

√
kBT

m
, (2.6)

where N the number of atoms, σ0 the initial width of density distribution, kB the Boltz-
mann constant, and m the atomic mass. In the experiment, we obtain the optical density
(OD) which corresponds to the integration of n(r, t) along the propagation direction (z)
of the probe laser, that is,

OD(T, t) = OD0 exp

[
− x2 + y2

2σ2(T, t)

]
, σ(T, t) =

√
σ2

0 + σv(T )2t2. (2.7)

As a result, taking the density distribution at two (or more) different times, t1 and t2, σv

can be determined, i.e., T is given by

T =

(
m

kB

)
σ2(T, t1)− σ2(T, t2)

t21 − t22
. (2.8)

Typical absorption images for thermal atoms and a BEC are shown in Fig. 2.6.

15
0 

�m

Figure 2.6: Typical TOF images. (Top): Thermal atoms. (Bottom): BEC. TOF time is
1 msec to 10 msec (from left to right) with the interval of 1 msec.
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2.3 Vacuum system
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Figure 2.7: Schematics of vacuum systems. Unit: mm.

Our vacuum chamber is schematically shown in Fig. 2.7. Two ion pumps (PST030,
ULVAC, 30 l/s) are installed at the beginning of the Zeeman slower and behind the
MOT region. In order to keep good vacuum at the MOT region, the differential pumping
technique is used. The MOT region is well separated from an atomic oven by a thin pipe (φ
= 4 mm, l = 6 mm). In addition, vacuum of the oven region is kept by a turbo-molecular
pump (TMP).

2.4 Lasers

2.4.1 399 nm (1S0↔1P1)

Zeeman slower laser

The slower beam at 399 nm is obtained by a frequency doubling unit (WAVE TRAIN,
Laser Analytical Systems Inc.) which has an LBO crystal (CRYSTECH, CPM, Type-I)5

inside a bow-tie ring cavity with oxygen flow. Oxygen extends the lifetime of the LBO
crystal. The fundamental light is generated by a Ti:sapphire laser (∼1 W at 800 nm,
MBR-110, Microlase Optical Systems) which is excited by a green laser (Millennia Xs,
Coherent Inc., 532 nm, 10 W). The output power is typically ∼50 mW at 399 nm. About
the frequency locking, details will be discussed later in this chapter.

Instead of this SHG system, we also have succeeded in slowing atoms by using a blue
laser diode (Nichia Corporation) which is stabilized by the injection locking method. But
in this work, we did not use the injection lock system at all.

5Crystal parameters: θ = 90◦, φ = 31.9◦ and Brewster angle θB=58.17◦, dimension 4×4×12 mm.
Details about the SHG cavity are discussed in Appendix B.
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Imaging laser

For absorption imaging, we do not need much laser power since the 1S0↔1P1 transition
is strong (Isat = 57 mW/cm2). The frequency of the imaging laser, however, should be
stable both in a short term and in a long term. Details about the frequency stabilization
are discussed here.

We use a GaN blue laser diode (NLHV500E, Nichia Corporation). By using an external
cavity laser diode (ECLD) system [46] with the Littrow configuration, the laser linewidth
is narrowed to about 10 MHz. Details about the Littrow configuration will be discussed
in the next chapter. For the purpose of absorption imaging of Yb atoms, frequency of
the imaging laser is required to be scanned for ∼2 GHz without any mode hops to cover
all Yb isotopes (see Table 2.2). Figure 2.8 shows fluorescence spectra observed by our
imaging laser. Except for 168Yb (natural abundance: 0.13 %), we can clearly identify
signals corresponding to all stable isotopes. These spectra are obtained by irradiating
the imaging laser with a narrow Yb atomic beam in a reference oven from the orthogonal
direction in order to eliminate a Doppler width as much as possible. This atomic beam
is used for frequency locking for a long term.

The natural linewidth of the 1S0↔1P1 transition is γ/2π = 29 MHz. Hence, 10
MHz may be narrow enough. For the stable imaging, however, the narrower linewidth is
desirable. In addition, since the imaging laser is also used to stabilize the other external
cavity (transfer cavity), further frequency narrowing has been carried out.

To this end, we have constructed the optical feedback system [47, 48, 49] which is
schematically shown in Fig. 2.9. We pick up about 10 % of the ECLD output and put it
into the additional confocal cavity (Mirrors: LASEROPTIK GmbH, Curvature = 10 cm,
R = 99.5 %, PZT: NEC Tokin, AER 13.6×10×20−D15). Only when the laser frequency
is resonant to the confocal cavity, the reflection light can return to the LD and the laser
frequency is narrowed due to the additional optical feedback. In such a case, since the
laser frequency is drawn to the cavity frequency, the square shape of the transmission
spectrum of the confocal cavity is observed when we scan the laser frequency as shown in
Fig. 2.10.

In order to lock the laser frequency to the confocal cavity, the length between the
ECLD and the confocal cavity is modulated by a PZT-φ attached to a mirror in front of
the confocal cavity by f = 40 kHz. The error signal is obtained by putting the modulated
transmission signal of the confocal cavity into a lock-in amplifier and applied to the PZT-φ.
The PZT-φ is also used to adjust the phase of optical feedback. In addition, the distortion
of the cavity transmission signal is detected by taking its third-order derivative. This is
experimentally realized by taking error signal by a lock-in amplifier with 3f(= 120 kHz)
reference frequency. The 3f error signal is applied to the PZT-G inside the ECLD. By
simultaneously applying the 1f and 3f electric feedback, the optical feedback is kept for
more than one hour as shown in Fig. 2.12.

Moreover, we stabilize laser frequency to the Yb atomic spectrum for the long term
stability. The laser frequency of the present optical feedback system is modulated at 40
kHz. Thus the fluorescence signal which is obtained by irradiating a Yb atomic beam
with this modulated light is also modulated at 40 kHz. Since the lifetime of the 1P1 state
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(5.5 ns) is much shorter than the modulation frequency, we can obtain the error signal by
putting the modulated fluorescence signal into a lock-in amplifier as shown in Fig. 2.11.
This error signal is applied to the PZT-C at the confocal cavity.

Other candidates

We also construct some laser systems for a more stable and powerful blue laser source.
One of the candidates is a waveguide PPLN crystal (NGK Insulators, Ltd.) instead of
the present LBO system. Since we do not need the optical cavity, the waveguide PPLN is
easy to handle. So far, the larger blue output power than that of the present LBO system
has not been stably obtained.

The other candidate is using the MOPA system. We construct an ECLD at 800 nm
(Eagleyard) and the output about 20 mW is amplified to about 1 W by a tapered amplifier
(Eagleyard). Then it is put into a bow-tie cavity in which the PPKTP nonlinear crystal
is installed. This system is now under development in our group and preliminary about
50 mW blue light is obtained.
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Figure 2.8: Fluorescence signal (1S0↔1P1) obtained by the present imaging laser. Signals
corresponding to all isotopes except for 168Yb (natural abundance: 0.13 %) are observed
without a mode hopping.
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Figure 2.9: Optical feedback system for absorption imaging.

Figure 2.10: Typical transmission signal of the cavity in a optical feedback system. The
laser frequency is drawn to the reference cavity because of the optical feedback system
which results in a square shape.
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Figure 2.11: Error signal of the atomic spectrum. Since the lifetime of 1P1 state (5.5 ns)
is much shorter than the modulation frequency (40 kHz), we can obtain the error signal
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of data logging.
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2.4.2 556 nm (1S0 −3 P1) - MOT

Dye laser

A MOT beam at 556 nm is obtained by a ring dye laser (Coherent 899) excited by Ar
ion laser (∼5 W). Rhodamin 560 (Exciton) is used and it is circulated by a circulator
(RD1000, Radiant Dyes Laser & Accessories GmbH). This circulator is made of stainless
steel (brass free). We found that brass in the circulator system decreases the lifetime of
a circulated dye.

Laser frequency should be narrowed below the natural linewidth of the MOT transition
(γ/2π = 182 kHz). Frequency of the dye laser is locked to a high finesse ULE (Corning)
cavity. The error signal obtained by the Pound-Drever-Hall method [50] is applied both to
an EOM inside the ring cavity and to an AOM out side the cavity. The EOM suppresses
the fast varying component of the frequency fluctuation [52] and the AOM suppressed
the slowly varying part. As a result, the linewidth is suppressed below 100 kHz. The
ULE cavity is placed in a vacuum chamber whose temperature is stabilized to reduce the
long term drift of the resonance frequency. So far, the frequency drift is suppressed to 70
kHz/s.

Transfer cavity - 556 nm and 800 nm

To stabilize the laser frequency of the Zeeman slower laser for a long term, we use the
transfer cavity. First, we stabilize the transfer cavity (RG-91T, Burleigh) to the 556 nm
laser which is stabilized to the ULE cavity. Then, the fundamental light of the slower
beam at 800 nm is locked to the transfer cavity. As a result, the long term frequency
stability of the ULE cavity is transferred to the frequency of the slower beam via the
transfer cavity.

Zeeman modulation

At the beginning of this work when we did not have a ULE cavity, we stabilized the
frequency to the Yb atomic spectrum by a Zeeman modulation technique. Though the
system is now totally replaced by the ULE cavity, the Zeeman modulation technique is
briefly introduced here since I developed the system.

For the purpose of the frequency stability of the MOT beam for a long term, we lock
the frequency to the atomic spectrum of the 1S0↔3P1 transition. To make the error
signal, the Zeeman modulation method is used. We apply both static B0 and modulated
magnetic field B1 sin ωmodt (3 kHz) to the Yb atomic beam. These magnetic fields induce
the modulated Zeeman shift ∆E on the |mJ | = 1 magnetic sublevels of the 3P1 state.
Here ∆E is given by

∆E = mJµBg(B0 + B1 sin ωmodt). (2.9)

where g is a g-factor (1.49 for the 3P1 state). As a result, the intensity of the fluorescence
detected by a PMT from the atomic beam is also modulated. By putting this signal into
a lock-in amplifier, a steep error signal is obtained as shown in Fig. 2.13. The static
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magnetic field is used to tune the locking point and to adjust the detuning of the MOT
laser.
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Figure 2.13: Error signals of the 1S0↔3P1 spectra obtained by the Zeeman modulation
method. Three peaks corresponds to isotopes 172Yb, 174Yb and 176Yb.

Fiber laser system

The MOT laser at 556 nm is obtained by a dye laser. In order to use a dye laser, we
(students) have to work very hard; we must change dye and clean up the cavity almost
every week, use Ar ion laser and so on. Thus, the new laser source at 556 nm which is
stable and maintenance-free is strongly desired.

The double wavelength of the MOT laser is 1111.3 nm. This wavelength is close to the
wavelength 1.3 µm which is known as zero-dispersion wavelength of the optical fiber. Since
the 1.3 µm laser is recently well used in the field of optical broadband communications,
many stable commercial lasers around 1 µm are now available. Additionally, we find that
a nonlinear crystal LBO can convert 1111.3 nm to 555.6 nm efficiently by a proper ring
cavity. Then, we decided to construct a new SHG system.

We use a commercial fiber laser (Koheras or Keopsys) at 1111.3 nm whose linewidth
is below 100 kHz. Using this new system, we can obtain more than 400 mW green laser
and its frequency locking survives for more than ten hours! In Appendix B, details about
this SHG system are described.

2.4.3 404 nm (1S0↔3D2)

A 404-nm laser is used to excite atoms to the 3P2 state via the intermediate 3D2 state
(see section 6.1). The laser system is completely same as that used in the imaging system
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stabilized by the optical feedback technique. The linewidth is narrowed to about 1 MHz
for 0.5 s.

For the long term stability, we use the transfer cavity as shown in Fig. 2.14. First,
we stabilized the transfer cavity to the imaging laser which is stabilized to the Yb atomic
spectrum. Then, the 404 nm laser is stabilized to the transfer cavity. The double passed
AOM between the transfer cavity and the optical feedback system is used to tune the
laser frequency. In the experiment, we first find the resonance signals using the atomic
beam in a reference oven as shown in Fig. 2.15 and then irradiate it with atoms in a trap.
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Figure 2.14: Transfer cavity system to stabilize the 404 nm laser for a long term.
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Figure 2.15: The 1S0↔3D2 spectra obtained by our laser system.
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Beam profiler

When we excite atoms in a FORT by the 404 nm laser, its focal point should be coincide
with that of the FORT laser (trap region) whose beam waist is 15 µm. To this end, the
beam profiler (BP, DataRay Inc., Beam R) is used. We put a glass plate (no coat) in
front of the input window of the vacuum chamber and let the partially reflected FORT
light go into the BP. BP shows us a radius of the input light. Thus by moving the stage
of BP, we can set the BP at the focal point of the FORT laser. Then, at the focal point
of the FORT laser, we put the 404 nm laser into the BP and adjust the focal point of 404
nm laser.

2.4.4 770 nm (3P2 −3 S1) and 649 nm (3P0 −3 S1) - Repumping

In this work, repumping lasers at 770 nm (3P2 −3 S1) and 649 nm (3P0 −3 S1) are used
to return atoms in the 3P2 state to the ground state where we can apply the absorption
imaging.

Both wavelengths are obtained by laser diodes. As for 770 nm, we use the commercial
product (6200, New Focus Inc). As for 649 nm (Toptica), we construct the ECLD system
in the Littrow configuration.

A laser galvatron of Yb (L2783-70NE-Yb, Hamamatsu Co.) is used for spectroscopy
of these two wavelength. In the laser galvatron, the metastable 3P2 and 3P0 states have
some population due to strong collisions between hot Yb atoms or recombination of Yb
ions. In order to avoid the Doppler broadening, we carry out the saturation spectroscopy.
Typical spectra are shown in Fig. 7.5 and Fig. 7.6.

At the beginning of this work, we stabilized both lasers to Yb atomic spectra. But
the system was not so stable. We then have constructed a new system as schematically
shown in Fig. 2.16. First, the transfer cavity is stabilized to the MOT laser (556 nm)
which is stabilized to the ULE cavity. Then, both the 649 nm and the 770 nm lasers
are stabilized to the transfer cavity. In order to spatially well separate the 556 nm and
649 nm, a prism is used. Since we lock three colors 556 nm, 649 nm and 770 nm to the
same cavity, the mirror reflectivity is reduced to 95 % but is constant from 500 nm to 800
nm (Lattice Electro Optics). The cavity transmissions for all lasers before and after the
locking are also shown in Fig. 2.16.

2.4.5 532 nm - FORT

As the FORT lasers, we use two diode-pumped solid state lasers (Verdi-V10, Coherent
Inc.). High power fundamental laser at 1064 nm obtained at Nd:YVO4 crystal is converted
to 532 nm by the LBO crystal. The maximum power is 10W.
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Figure 2.16: Three color lock. The transfer cavity is stabilized to the MOT laser which is
stabilized to the ULE. Then, the 649 nm and 770 nm lasers are stabilized to the transfer
cavity.
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Chapter 3

A diode laser system for
spectroscopy of the ultranarrow
magnetic quadrupole transition in
ytterbium atoms

TA PPLN
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Figure 3.1: Apparatus used for generating the 507-nm narrow-line laser. FI, Faraday
isolator; AOM, Acousto-optic modulator; DBM, Double-balanced mixer; φ, phase shifter.

In this chapter, we describe the development of a compact diode-laser based system
to generate 507-nm laser for the purpose of a spectroscopy of the 1S0↔3P2 transition in
Yb atoms. In previous studies, lasers around 507 nm is produced by, e.g., a frequency
doubled Yb:YAG disk laser [53] and frequency doubled single-frequency diode laser [54,
55]. The narrowest linewidth is about 100 kHz [55]. In this study, in order to observe the
ultranarrow transition, the laser linewidth has been reduced to less than 1 kHz by tightly
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locking it to a high finesse optical cavity. We developed an ultranarrow-linewidth laser
system which consists of an extended cavity laser diode (ECLD), a tapered amplifier, and
a MgO-doped periodically poled lithium niobate nonlinear crystal (PPLN). In addition,
since the transition linewidth of iodine molecules becomes narrowest around 507 nm, our
simple and compact system could be a high performance and transportable frequency
reference. Toward this application, we also demonstrate laser spectroscopy of iodine
molecules over the range of 50 GHz at 507 nm, which is presented in Appendix C.

3.1 External cavity with diffraction grating

Gain-width of recent solitary laser diodes reaches about 100 nm. It is sure that the
laser linewidth can be narrowed by putting an external cavity around such laser medium.
However, the additional external cavity also produces many longitudinal modes. Thus,
if we just put two mirrors in front of and behind the medium, the laser operates with
multi-modes. This problem can be overcome by using a dispersive external cavity. The
diffraction grating is used to this purpose.

Diffraction grating diffracts incident lights to some discrete directions determined by
the so-called grating equation. The direction which satisfies the reflection law to the
incident angle is defined as the 0th order diffracted direction. From this angle to outer
angle, 1st, 2nd... orders are defined. Usually, we let the first order diffracted light go back
to the laser medium, so that the backward facet of an LD and a grating surface construct
the external cavity. The direction of the 1st order light strongly depends on the laser
wavelength. As a result, many longitudinal modes caused by the external cavity could be
suppressed to the desired one (sometimes a few modes). This results in the single-mode
operation of the LD. In such a configuration, the 0th order diffraction is used as an output
coupler.

For now, as for the external cavity which consists of mirrors and diffraction grat-
ings, two configurations are well used, that is, Littman and Littrow configurations. Both
methods have advantages and disadvantages. In the next section, I will discuss them.
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3.1.1 Littman vs Littrow

Mirror

Grating

LD Lens

Littman

Grating

LD Lens

Littrow

Figure 3.2: Littman and Littrow configurations

Littrow configuration

In the Littrow configuration, the 1st order diffracted light returns to the LD and 0th
order direction is used as an output coupler. In this configuration, the backside facet of
an LD and the diffraction grating surface make the external cavity (I assume that the
front facet of an LD is AR coated). In order to change the laser wavelength, we should
move the grating back and forth by a PZT element attached to the grating.

The advantage of this method is that we can expect a strong feedback because we use
the diffraction grating once whereas Littman configuration uses twice. Strong feedback
may contribute to the frequency narrowing. Sometimes this feedback is too strong. Since
strong feedback may damage the LD chip, we have to be careful when we choose the
grating [56]. The other advantage is that we can easily make this system and make it
compact. Thermal stability is one of the key point of the stable LD oscillation. If the
system is compact, controlling the temperature becomes easier.

On the other hand, disadvantages also exist in the Littrow configuration. One of them
is the change of the output direction which results from tuning of the laser wavelength.
When we rotate the grating to change the wavelength, the 0th order direction is also ro-
tated together. This change is negligibly small for usual experiments. However, it may be
a big problem for long optical path without an optical fiber, position-sensitive experiment
and so on. The other disadvantage is that sometimes the selectivity of longitudinal modes
by grating is not good enough for a stable and widely tunable single-mode operation. To
avoid this problem, you can put a thin etalon between an LD and a grating to suppress
residual longitudinal modes. This is, however, not common because additional optics are
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not desirable. Instead the common method is to use a non-AR coated LD. In this case,
the front facet and back facet of the LD play a same role as a thin etalon.

Littman configuration

Unlike the Littrow configuration, 1st order diffracted light goes to the additional tuning
mirror in the Littman configuration. It returns to the grating and the 1st order diffracted
light goes back to the LD. Hence, the LD back facet and an additional mirror construct
the external cavity.

One of the advantages of the Littman configuration is its small frequency passband.
In this configuration, we can select an arbitrary incident angle to the grating. Hence,
we can choose a grazing incidence to use as many grooves on the grating as possible.
Since the optical passband of grating is determined by how many grooves are interacted
with the incident light, using a wide area of the grating surface is desirable. In addition,
the grating surface is used twice in one round trip. Thus, this effect becomes doubled.
Usually, in the Littman configuration, the frequency passband is small enough for an LD
to operate in a single-mode and be tuned for a wide area of wavelength without any other
additional optics. The other advantage is that output direction does not change at all
when we tune its wavelength. In the Littman configuration, the cavity length can be
changed by moving not the grating but the tuning mirror. Hence the 0th order direction
doesn’t change at all.

Additionally, Littman found the special configuration which enables us to simultane-
ously change the cavity length and the angle of the tuning mirror without breaking the
grating equation [57]. The principle is as follows.

Mirror

Grating

LD

Pivot

Figure 3.3: Littman configuration

Figure 3.3 is the Littman configuration. The point at which three lines – grating
surface, tuning mirror surface and back facet of LD – are crossed is called a pivot point.
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In this configuration, as long as you rotate the tuning mirror around the pivot point, laser
frequency never experiences the mode hops, so that extremely wide tuning range could
be realized in principle. The reason can be explained as the following.

Two equations must be satisfied in this configuration.

L =
λ

2
N (3.1)

λ =
d

m
(sin θ0 + sin φ), (3.2)

where L is the cavity length, N is a positive integer, λ is the laser wavelength, d is
groove spacing, m is the diffraction order, and θ0 and φ are incident and diffracted angle,
respectively. (3.1) is the ordinary equation which determines the longitudinal modes.
(3.2) is known as the grating equation. As illustrated in Fig. 3.3,

L = lf + lp sin φ. (3.3)

By substituting (3.3) to (3.1), the following equations are obtained.

λ =
2

N
(lf + lp sin φ) (3.4)

λ =
d

m
(sin θ0 + sin φ). (3.5)

Here, when we scan the wavelength, variables are only λ and φ and all of the other
parameters (lf , lp, θ0, d, N , and m) are constant. If these constants satisfy the following
two equations

lp =
Nd

2m
, (3.6)

lf =
Nd

2m
sin θ0, (3.7)

then both (3.4) and (3.5) are always satisfied for arbitrary λ and φ. Hence, we can tune
the laser wavelength continuously by changing φ without any mode hops.

The disadvantage of the Littman configuration is the complexity of the system. We
have to put an additional tuning mirror and properly arrange every element which can
define the correct pivot point.

We chose the Littman configuration for two reasons. First, we planned to use a tapered
amplifier which is very sensitive to the input direction of the seed laser. We considered that
change of the output direction in the Littrow configuration may be crucial. In our different
work, however, we have succeeded in using a TA with ECLD in the Littrow configuration.
Thus, in practice, both configurations can be used. Second, we want to narrow the laser
linewidth as much as possible by the ECLD. Then the Littman configuration is better as
discussed above.
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3.1.2 ECLD at 1014 nm - Littman configuration

Ruled Grating 1200g/mm with Au coating
2.5mm
�

50mm
�

t 9.5mm  ( Optometric )

Anamorphic
prism pairs
(Thorlabs, PS871-B)

Temperature of beryllium copper base is stabilized 
separately from LD.

1014nm LD ( Eagleyard ) is mounted
in a collimation tube(LT230P-B, Thorlabs) HR@1014nm mirror (50mm

�
12.5mm
�

t 5mm)
on LEES mount (LM1�4025�6 ) 

Figure 3.4: Picture of the developed ECLD system in the Littman configuration. Laser
diode is stabilized by the external cavity which consists of a diffraction grating and a
mirror.

Figure 3.4 is a picture of our ECLD system. We first constructed an ECLD system at
1014 nm in the Littman configuration. The laser source is a ridge waveguide GaAs semi-
conductor laser diode (Eagleyard Photonics, EYP-RWE-1060-10020-0750-SOT01-0000).
Due to the anti-reflection coating, the tuning range expands from 960 nm to 1080 nm.
The laser diode is installed in a aluminum mount. The polarization is TE mode. The
output beam is collimated by an aspheric lens (f = 4.5 mm, Thorlabs, C230TM-B) which
is also installed in an aluminum mount with a Teflon tape so that the screw of the lens
mount can be stably installed.

About 15 % of the diode output is diffracted by a grating with Au coating (Opto-
metrics, 1200 grooves/mm) and retroreflected by a mirror (LASEROPTIK GmbH, 250
mm×12.5 mm×t5 mm). A laser (linear) polarization is parallel to the graves of the diffrac-
tion grating. The mirror is glued to a stable ”LEES” mirror mount (LINOS Photonics,
LM1-4025-6). As a result, a 12 cm-long extended cavity is constructed. A total feedback
to the laser diode is only 2 %, which is smaller than the typical feedback rate (∼ 60%)
in a usual ECLD system. The reason is that the AR-coated Eagleyard LD chip seems to
be easily damaged by the optical feedback [56]. The position of the mirror determines
the laser frequency. It can be tuned by a PZT actuator placed in a leaf spring on which
the mirror is mounted. The supporting point of the leaf spring corresponds in position
to the pivot point of the Littman configuration. The distorted beam shape of the laser
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diode is shaped by a pair of anamorphic prisms (Thorlabs, PS871-B). Thus, we can scan
the frequency over more than 30 GHz without mode hopping. The linewidth is reduced
to a few hundred kilohertz.

Since the cavity length is relatively long in the Littman configuration, temperature
stability of all components is crucial. The temperature of a laser diode and a base of
the ECLD system is separately stabilized at the same temperature by Peltier elements
(Melcor) and temperature controller (Thorlabs, TED200) [58]. In addition, beryllium
copper (CuBe) alloy was chosen for the material of the base because CuBe has a good
thermal conductivity, good elastic modulus (for a leaf spring), and a small rate of thermal
expansion. In Fig. 3.5, the main properties of CuBe are compared to those of phosphor
bronze and aluminum. We can make the elastic modulus of CuBe better by annealing,
though we did not carry out. Note that since the powder of CuBe may be harmful to our
health, we have to pay careful attention when we fabricate it. After fabrication, metallic
plating of CuBe may be desirable to safely handle it in the experiment.
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Figure 3.5: Basic parameters of CuBe are compared to those of Cu and Al which are
commonly used as a base of the ECLD system.

3.2 Tapered amplifier

Adaptor and mount

Since the 20 mW diode output is too weak to generate enough power at 507 nm by using
the PPLN nonlinear crystal, we use a tapered amplifier (m2k-laser GmbH, TA 1030 1000).
Its polarization is TE mode. Thus the polarization of the seed light should be parallel
to the epi-layer (the wing of the TA chip) as shown in Fig. 3.6(Left). We use a half
wave plate to precisely tune the polarization. We put a 60 dB optical isolator (Isowave,
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I−98−SD−5) between the ECLD and the TA to protect the ECLD from the backward
emission of the TA.

Slot for TA not to rotate

Figure 3.6: (Left): Input and output direction of the C-mount type tapered amplifier.
(Right): The adaptor for a TA chip developed in this work.

We first developed a TA adaptor as shown in Fig. 3.6(Right). Our TA adaptor is
made of Cu and its temperature is detected by a thermistor. The anode and cathode
parts are separated by an insulator (Teflon).

Next we constructed a mount for the TA adaptor, an input coupler and an output
coupler. One of the important points to operate a TA chip is the stability of the position
of the lens mount of the input coupler. Since the aperture size of a TA chip is 2 µm
in height and 4 µm in width, small position shift of the input lens due to, for example,
the thermal expansion of the mount is sometimes crucial. We found that this problem
can be overcome by putting all elements on a same plate as shown in Fig. 3.7. To make
the system stable, we got rid of adjustment parts as much as possible and we fixed all
movable parts by epoxy after adjustment. Thus, finally, all components are completely
fixed to the mount.

The seed light and output amplified light are collimated by aspheric lenses whose
effective focal length are f=4.5 mm (Thorlabs, C230TM-B) and f = 2.8 mm (Thorlabs,
C390TM-B), respectively. We use two LEES stable mirror mounts to adjust the input.
As a result of these efforts, the seed laser has been coupled to the TA chip for more than
one month without any adjustment.

We also constructed a current controller for the TA based on [56]. The current driver
module whose maximum current is 2.5 A (Thorlabs, LD3000) is controlled by the addi-
tional circuit. With the operating current of 2.5 A and the seed power of 20 mW, the
tapered amplifier provides 600 mW at 1014 nm (Fig. 3.8).

Alignment of the seed light

When a large current is applied to a TA chip, breaking the input coupling of the seed
light may damage the TA chip. We should carry out the alignment with low operating
current (500 mA ∼ 1 A). Also note that the output beam shape of the TA chip strongly
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5cm

9c
m

Figure 3.7: Design of the TA mount. The key point is putting all elements on one plane.

Figure 3.8: Amplified power at a tapered amplifier with 20 mW seed light as a function
of the TA operating current.
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depends on the operating current. As a result, when one makes an optical path using a
TA output, one should operate the TA current at the value you want to use (not the low
current).

The followings are the method to align a seed light to a TA chip obtained from our
trial and error.

1. Tune the xy (normal plane to the input laser) position of the input coupler lens for
a TA backward emission to locate at the center of the input coupler.

2. Tune the input coupler focus by seeing a far side image of TA backward emission.

3. Tune two coupling mirrors to make the optical path of the seed laser to correspond
to the TA backward emission.

4. Tune coupling mirrors by seeing the amplified laser power.

Input

Output

Jig for output coupler

Figure 3.9: By using a handmade jig, the output coupler of the TA system was carefully
adjusted by observing the amplified beam shape.

Beam shaping

A beam divergence of TA output along the horizontal axis is different from that along
the vertical axis. Basically, we first collimate the horizontal axis by the output coupler
and then collimate the vertical axis by using cylindrical lenses. However, we observed a
interference pattern in the collimated beam. As a result, in order to obtain the proper
beam radius and good beam shape, we needed several optics as shown in Fig. 3.10. More
investigations will be required to understand the mechanism of this interference pattern.
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Figure 3.10: Several convex lenses and cylindrical lenses were required to make the beam
shape of amplified light clean.

3.3 PPLN crystal

By using the SHG (Second Harmonic Generation) technique, we obtained 507-nm laser
light. We use a bulk PPLN – Periodically Poled (MgO doped Congruent) Lithium Niobate
– crystal (HC Photonics) which converts the wavelength of 1014 nm to 507 nm. The quasi
phase matching (QPM) period of our PPLN crystal is 5.97 µm and QPM temperature is
about 40 ◦C. The dimension is 50×3×0.5 mm (see Fig. 3.11) and both input and output
facets are AR coated both for 1014 nm and 507 nm.

We developed a crystal oven as shown in Fig. 3.11. Since the conversion efficiency
strongly depends on the crystal temperature, we have to uniformly heat the crystal.
Hence, the oven is made by Cu and covers whole crystal (top cover is not shown in Fig.
3.11). Additionally, the oven is covered by thermal insulators (foamed polypropylene)
and its temperature is controlled by Peltier elements.

After the 40 dB optical isolator (Isowave, I−98T−5−H) which protects the TA chip
from the back scattering at the PPLN input surface, we put the fundamental light (1014
nm) into the crystal. Since the polarization must be vertical, we adjust the polarization
by using a half wave plate in front of the PPLN crystal. In addition, we have to make
the Rayleigh length1 long enough to cover the crystal length 5 cm. Present parameters
in our system are the followings: beam waist w0 = 86 µm, the Rayleigh length zR=2.3
cm, and the beam radius at the surface of PPLN = 86 µm. According to the data sheet
provided by the company, the average conversion efficiency is expected to be 2.6 % W−1

cm−1, i.e., 13 % W−1 for our 5 cm crystal. However, so far, we have realized only 3 %.
The reason of such a bad conversion efficiency has not been clear yet. Bad spatial mode
of TA output may be one of the reasons. Investigations are in progress.

1Rayleigh length zR is given by

zR =
πw2

0

λ
, (3.8)

where w0 is the beam waist, λ is the wavelength.



3.3. PPLN CRYSTAL 41

PPLN crystal

Oven for PPLN

5cm

Figure 3.11: (Left) PPLN crystal used in the developed system. (Right): Developed oven
to stabilize the temperature of the PPLN crystal at phase matching temperature.
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Figure 3.12: Dependence of output power of SHG on the PPLN temperature.
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3.4 ULE cavity

To achieve further reduction of the laser linewidth, we lock the laser to a high-finesse
Fabry-Pérot cavity by the Pound-Drever-Hall technique [50]. To this end, a small part
of the diode output (< 1 mW) is phase modulated by an electro-optic modulator (EOM)
driven at 12 MHz and sent to the cavity. The finesse and the free spectral range (FSR)
is 50 000 and 1.5 GHz, respectively, at 1014 nm. The electric feedback is applied to the
laser current through a servo circuit whose gain bandwidth expands over 3 MHz. As a
result, the laser linewidth is reduced to less than 1 kHz which is estimated by the residual
width of the error signal after the frequency locking.

In order to isolate the cavity from the environmental noise such as thermal and acoustic
fluctuations, the cavity spacer is made of an ultra-low expansion (ULE) glass (Corning)
and placed in a vacuum chamber whose vacuum is kept below 10−8 Torr by an ion pump
(Varian, StarCell, 20 l/s). Figure 3.14 shows how to enclose the high-finesse cavity in a
vacuum chamber. The cavity is supported by two viton O-rings at Airy points (see Fig.
3.14) at which we can support the cavity so that the both input side and output side
can be maximally parallel to each other. Moreover, in the vacuum chamber, the cavity is
doubly covered with copper plates coated with Au in order to achieve a uniform heating
by black body radiation. The temperature of the vacuum chamber is also stabilized by
Peltier units almost at the zero-expansion temperature of the ULE glass through the
copper plate placed at the bottom of the chamber. The vacuum chamber is covered
with thermal insulators (foamed polypropylene) in order to thermally isolate it from the
environment. As a result, the long-term drift is reduced to 0.4 Hz/s at 507 nm measured
by the 1S0↔3P2(m = 0) transition in 174Yb (see Fig. 3.13). Furthermore, by placing the
cavity on a bench top vibration isolation platform (Minus K Technology, 350BM-1), we
isolate the cavity from the floor vibration at frequencies above 0.5 Hz. The double-passed
acousto-optic modulator (AOM) between the EOM and the cavity is used to tune the
laser frequency. In order to cover all of the FSR (=1.5 GHz) of the cavity, we use a
combination of 350 MHz and 190 MHz modulators. After the frequency locking, the laser
frequency is scanned by changing the RF frequency applied to AOMs.
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Figure 3.13: Stability of the ULE cavity was measured as the shift of the resonance
frequency of the 1S0↔3P2(m = 0) transition in Yb.
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Figure 3.14: How to install a ULE cavity in a vacuum chamber.
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Chapter 4

Optical excitations

In this chapter, theories of optical excitations are described. First, we introduce the mul-
tipole expansion of an electromagnetic field and then see how each terms induce multipole
transitions in atoms. Calculations of transition matrix elements of atoms interacting with
a laser field yield selection rules. We derive the selection rules of the electric dipole (E1),
electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transi-
tions, all of which play a key role in this work except for the M1 transition [51].

4.1 Multipole expansion of an electromagnetic field

Basic algebras

We first introduce some basic algebras required in the following discussions. When we
carry out a multipole expansion, vector spherical harmonics YJ,L,M(θ, φ) are used as a
basis which are defined by

YJ,L,M(θ, φ) = (−1)1−L−M
√

2J + 1
+1∑

q=−1

(
L 1 J

M − q q −M

)
YL,M−q(θ, φ)êq, (4.1)

where YL,M is the spherical harmonics and ê
q (q = −1, 0, +1) are the unit vectors in

spherical basis which are related to the three Cartesian unit vectors1 by

ê+1 = − 1√
2
(êx + iêy), ê

0 = êz, ê−1 =
1√
2
(êx − iêy). (4.3)

In (4.1),

(
J k J ′

−M q M ′

)
(4.4)

1The inverse relations are

êx = − 1√
2
(ê+1 − ê−1), êy =

i√
2
(ê+1 + ê−1), êz = ê0 (4.2)
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is a Wigner 3j-Symbol which vanishes unless it satisfies the following three conditions.

(
j1 j2 J
m1 m2 −M

)

1. − |j1| ≤ m1 ≤ |j1|, −|j2| ≤ m2 ≤ |j2| and− |J | ≤ M ≤ |J |
2. m1 + m2 = M

3. |j1 − j2| ≤ J ≤ j1 + j2 (triangular inequalities). (4.5)

As we can see later, these restrictions determine the selection rules of atomic transitions.
As a consequence of the orthogonality relation of the spherical harmonics2, vector spherical
harmonics satisfy the following orthogonality relation

∫
YJ,L,M ·YJ ′,L′,M ′dΩ = δJ,J ′δL,L′δM,M ′ , (4.7)

where dΩ = sin θdθdφ is an element of solid angle.
Relations between Cartesian and spherical coordinates3, inner product and cross product
of two vectors in spherical basis are given by

A = Axêx + Ayêy + Azêz

= −A+1 ˆe−1 + A0ê0 − A−1ê+1 (4.9)

A ·B =
+1∑

q=−1

(−1)qAqB−q

= −A+1B−1 + A0B0 − A−1B+1 (4.10)

A×B

= i(A0B−1 − A−1B0)ê+1 + i(A−1B+1 − A+1B−1)ê0 + i(A+1B0 − A0B+1)ê−1.

(4.11)

Bessel functions jn(x) also play an important role in the discussion of selection rules which
satisfy the following identities,

jn−1(x) =
n + 1

x
jn(x) +

d

dz
jn(x) (4.12)

jn+1(x) =
n

x
jn(x)− d

dz
jn(x), (4.13)

2 ∫
Y ∗

L,M (θ, φ)YL′,M ′(θ, φ) sin θdθdφ ≡
∫

Y ∗
L,M (θ, φ)YL′,M ′(θ, φ) sin θdΩ = δL,L′δM,M ′ (4.6)

3The relations between Ax,y,z and A−1,0,+1 are

A±1 = ∓ 1√
2
(Ax ± iAy), A0 = Az (4.8)
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and

jn(x) ' xn

(2n + 1)!!
(x ¿ 1) (4.14)

For the convenience in later calculations, some spherical harmonics and vector spher-
ical harmonics are listed in Appendix D.

Multipole expansion

Let us consider a plane electromagnetic wave whose vector potential A is given by4

A±(r, t) = êkλe
±i(k·r−ωt), (4.15)

where k is the wave number vector which is parallel to the wave propagating direction,
êkλ is the polarization (unit) vector, ω = ck and c is the speed of light. In the following
discussion, the time dependent factor in (4.15) is not important and thus it is eliminated.

First, we expand (4.15) in a series of vector spherical harmonics

A±(r) =
∑

J,L,M

A±
J,L,MYJ,L,M(θr, φr), (4.16)

where θr and φr are the angular coordinates of r. A±
J,L,M can be calculated from (4.15),

(4.16) and (4.7),

∫
(YJ,L,M(θr, φr) · êkλ)e

±ik·rdΩ =
∑

J ′,L′,M ′
A±

J ′,L′,M ′

∫
YJ ′,L′,M ′(θr, φr) ·YJ,L,M(θr, φr)dΩ

∴ A±
J,L,M =

∫
(YJ,L,M(θr, φr) · êkλ)e

±ik·rdΩ. (4.17)

The plane wave can be expanded in a series of spherical Bessel functions,

e±ik·r = 4π
∞∑

l=0

l∑

m=−l

(±i)ljl(kr)Y ∗
l,m(θk, φk)Yl,m(θr, φr) (4.18)

where θk and φk are the angular coordinates of k.
By substituting (4.18) into (4.17) and performing integration, we can describe A± as

A±(r) = 4π
∑

J,L,M

(±i)L(YJ,L,M(θk, φk) · êkλ)(jL(kr)YJ,L,M(θr, φr)). (4.19)

Here, due to the restrictions (4.5) of a Wigner-3j symbol, possible values of L are J −
1, J, J + 1 and possible values of M are J, J − 1, · · · − J . In other words, only three
independent unit vectors YJ,J−1,M , YJ,J,M , and YJ,J+1,M are possible. When we consider
the interaction between atoms and a laser field, it is more convenient to form mutually

4The amplitude of the vector potential is not considered (assumed to be 1) since it doesn’t play any
role here. It will be introduced in the next section.



4.1. MULTIPOLE EXPANSION OF AN ELECTROMAGNETIC FIELD 47

orthogonal unit vectors Y
(−1)
J,M , Y

(0)
J,M , and Y

(+1)
J,M which correspond to longitudinal (−1)

and transverse (0, +1) polarizations of a laser field. Relations between these two bases in
spherical coordinates were given by Akhiezer and Berestetsky [59] in the form5

YJ,J−1,M(θ, φ) =

√
J

2J + 1
J

(−1)
J,M (θ, φ) +

√
J + 1

2J + 1
Y

(+1)
J,M (θ, φ)

YJ,J,M(θ, φ) = Y0
J,M(θ, φ)

YJ,J+1,M(θ, φ) = −
√

J + 1

2J + 1
Y

(−1)
J,M (θ, φ) +

√
J

2J + 1
Y

(+1)
J,M (θ, φ).

Thus, we can rewrite (4.19) in the multipole expansion

A±(r) = 4π
∞∑

J=1

J∑
M=−J

+1∑
µ=0

(±i)J−µ(Y
(µ)
J,M(θk, φk) · êkλ)a

(µ)
J,M(r), (4.20)

where6

TE mode (MJ transition)

a
(0)
J,M(r) = jJ(kr)Y

(0)
J,M(θr, φr)

TM mode (EJ transition)

a
(+1)
J,M (r) =

(
d

d(kr)
jJ(kr) +

jJ(kr)

kr

)
Y

(1)
J,M(θr, φr) +

√
J(J + 1)

jJ(kr)

kr
Y

(−1)
J,M (θr, φr).

(4.21)

The longitudinal term a
(−1)
J,M is not included in (4.20) since it is parallel to the k and always

k · êkλ = 0. Note that, in (4.20), the polarization (ekλ) and propagation direction of the
laser field (θk and φk) are included in the expansion coefficient.

5Inverse relations are

Longitudinal mode(‖ k) :

Y(−1)
J,M (θ, φ) =

√
J

2J + 1
YJ,J−1,M (θ, φ)−

√
J + 1
2J + 1

YJ,J+1,M (θ, φ)

Transverse (TM and TE) mode :
Y0

J,M (θ, φ) = YJ,J,M (θ, φ)

Y(+1)
J,M (θ, φ) =

√
J + 1
2J + 1

YJ,J−1,M (θ, φ) +

√
J

2J + 1
YJ,J+1,M (θ, φ).

6Here we use following relations between spherical Bessel functions.

jn−1(x) =
n + 1

x
jn(x) +

d
dx

jn(x)

jn+1(x) =
n

x
jn(x)− d

dx
jn(x)
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We should also remember that a
(µ)
J,M satisfies the transversality condition

∇ · aµ
J,M(r) = 0

∴ aµ
J,M(r) · p = p · aµ

J,M(r). (4.22)

In addition, the wave vector k must be always orthogonal to the polarization vector
êkλ(= −λ+1ê−1 + λ0ê0 − λ−1ê+1), i.e., k · êkλ = 0. Thus, the following equation must be
always satisfied.

(λ−1 − λ+1) sin θk cos φk − i(λ−1 + λ+1) sin θk sin φk + λ0 cos θk = 0. (4.23)

4.2 Matrix elements and selection rules for E1, E2,

M1, and M2 transitions

4.2.1 Interaction between atoms and a laser field

First of all, we derive matrix elements for the E1, E2, M1, and M2 transitions which
determine their selection rules.

A Hamiltonian describing the system of atoms and an electromagnetic field interacting
with them is given by

H = (Hrad + Hatom) + Hint (4.24)

where

Hrad =
∑

kλ

~ωk(â
†
kλâkλ +

1

2
) (4.25)

is the Hamiltonian for a free field. kλ represents the mode of the field, k and λ are the
wave vector and the polarization (λ = 1, 2) respectively and ωk = ck. âkλ and â†kλ are
annihilation and creation operators, respectively, for a photon with wave vector k and
polarization vector êλ.

Hatom =
∑

i

( p2
i

2m

)
+ V ′ (4.26)

is the atomic Hamiltonian for every electron i. V ′ contains all terms which is necessary
to define the atomic state (interaction between nucleus and electrons, repulsion among
electrons, and so on...).

If we take the most dominant term in the interaction Hamiltonian Hint, it can be given
by

Hint
∼=

( e

mc

)
p ·A (4.27)

where p and A represent electron momentum and vector potential of external electro-
magnetic field, respectively [51].

In our calculations, the Hamiltonian H may be written as

H = H0 + Hint (4.28)
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where H0 = Hrad + Hatom. We regard the second term Hint as a perturbation. Thus what
we have to do first is to examine details of Hint.

In the Schrödinger representation and in SI unit, the vector potential for plane wave
A is described as,

A(r) =
∑

kλ

√
~c2

2V ε0ωk

êkλ[âkλe
ik·r + â†kλe

−ik·r] (4.29)

where V is the volume of the considered system. With (4.27) and (4.29), Hint can be
written as

Hint =
∑

kλ

( e

m

)√
~

2V ε0ωk

(êkλ · p)[âkλe
ik·r + â†kλe

−ik·r] (4.30)

≡ H
(+)
int + H

(−)
int (4.31)

where

H
(−)
int =

∑

kλ

( e

m

)√
~

2V ε0ωk

(êkλ · p)âkλe
ik·r (4.32)

H
(+)
int =

∑

kλ

( e

m

)√
~

2V ε0ωk

(êkλ · p)â†kλe
−ik·r. (4.33)

In the following calculations of the excitation rate or the trap depth of a FORT, matrix
elements of these Hamiltonians |〈b, n′kλ|Hint|a, nkλ〉|2 play a major role. Here |a〉 and |b〉
are the atomic state vectors and n′kλ and nkλ represent the occupation number of kλ mode
of the external field.

By using âkλ |nkλ〉 =
√

nkλ |nkλ − 1〉 and â†kλ |nkλ〉 =
√

nkλ + 1 |nkλ + 1〉, the square of
matrix elements can be modified as

|〈b, nk′λ′|Hint|a, nkλ〉|2 = |〈b, nk′λ′|H(−)
int |a, nkλ〉δ(nk′λ′ − 1, nkλ)

+〈b, nk′λ′|H(+)
int |a, nkλ〉δ(nk′λ′ + 1, nkλ)|2

= |〈b; nkλ − 1|H(−)
int |a; nkλ〉|2 + |〈b; nkλ + 1|H(+)

int |a; nkλ〉|2.
(4.34)

Two terms in the last equation can be easily calculated by (4.32) and (4.33).
Substituting (4.20) to (4.32), (4.33), and (4.34), we have

〈b; nkλ − 1|H(−)
int |a; nkλ〉 =

( e

m

)√
~nkλ

2V ε0ωk

4π
∑
J,M

+1∑
µ=0

iJ−µ(Y
(µ)
J,M(θk, φk) · êkλ)〈b|a(µ)

J,M · p|a〉,

〈b; nkλ + 1|H(+)
int |a; nkλ〉 =

( e

m

)√
~(nkλ + 1)

2V ε0ωk

4π
∑
J,M

+1∑
µ=0

(−i)J−µ(Y
(µ)
J,M(θk, φk) · êkλ)〈b|a(µ)

J,M · p|a〉.

(4.35)
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The transition induced by the TM (transverse magnetic) field is called ”EJ transition”.
It corresponds to the case where µ = +1 in (4.20). In a similar manner, when µ = 0, i.e.,
the TE (transverse electric) field induces the transition, it is called ”MJ transition”. In
the following, we will see the E1, E2, M1, and M2 transitions (J=1, 2 and µ = 0, 1) in
detail. All of these transitions (except for the M1 transition) play an important role in
this work.

Here, we introduce a useful equation. By using a commutation law between the
position r and the momentum p ([x, p2] = 2i~px and so on), we find

[r, Hatom] =

(
i~
m

)
p, (4.36)

which leads to

〈b|p|a〉 =
(m

i~

)
〈b|[r, Hatom]|a〉

=
(m

i~

)
(Eb − Ea)〈b|r|a〉

= imωk〈b|r|a〉, (4.37)

where ~ωk = Eb −Ea. For an N -electron system, we consider r = ΣN
j=1rj, where rj is the

position of the electron j.

4.2.2 E1 transition

The E1 transition is induced by the term in (4.35) with µ = +1 and J=1. With the aid
of (4.21), (4.37) and j1(kr) ' kr/3 (when kr ¿ 1),

4π
+1∑

M=−1

(ekλ ·Y(+1)
1,M (θk, φk))〈b|a(+1)

1,M · p|a〉 (4.38)

' 4π
+1∑

M=−1

(ekλ ·Y(+1)
1,M (θk, φk))〈b|

(
2

3
Y

(1)
1,M +

√
2

3
Y

(−1)
1,M

)
· p|a〉

= 4π
imωk√

6π

+1∑
M=−1

(ekλ ·Y(+1)
1,M (θk, φk))êM · 〈b|r|a〉. (4.39)

The matrix element is given by

〈b; nkλ − 1|H(−)
int |a; nkλ〉E1 = ie

√
~nkλωk

2V ε0

√
8π

3

+1∑
M=−1

(ekλ ·Y(+1)
1,M (θk, φk))êM · 〈b|r|a〉,(4.40)

〈b; nkλ ± 1|H(±)
int |a; nkλ〉E1 = ie

√
~(nkλ + 1)ωk

2V ε0

√
8π

3

+1∑
M=−1

(ekλ ·Y(+1)
1,M (θk, φk))êM · 〈b|r|a〉.

(4.41)
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Since r is the first rank irreducible tensor, the Wigner-Eckart theorem7 gives

〈α, J,M |r(1)
q |α′, J ′,M ′〉 = (−1)J−M

(
J 1 J ′

−M q M ′

)
〈α, J ||r(1)||α′, J ′〉. (4.45)

Due to the restriction (4.5) of a Wigner-3J symbol, the selection rule is given by

∆J = 0,±1 ∆M = 0,±1, Ja + Jb ≥ 1, πa = −πb, (4.46)

The conservation of parity requires πaπemπb = +1 where πa, πb, πem are parity of the
initial and final states and the multipole electromagnetic field, respectively. Parity of an
electromagnetic field is defined as the parity of the magnetic field B = ∇ × A. From
(4.20), parity of the TM and TE fields is determined by YJ,L,M and given by (−1)L.
In the case of the E1 transition, parity of the TE field Y±1

1,M with J = 1 is given by

πE1 = (−1)J = −1 which leads to (4.46).

For the E1 transition, Y
(1)
1,M are given by

Y
(1)
1,±1 =

1√
4π

1

12

{
3
√

6(1 + cos2 θk)ê±1 ± 6
√

3 cos θk sin θke
±iφk ê0 + 18

√
5 sin2 θke

±2iφk ê∓1

}

(4.47)

Y
(1)
1,0 =

3

2

1√
6π

sin2 θkê0 +

√
3

16π
cos θk sin θk(e

−iφk ê+1 + eiφk ê−1). (4.48)

As an example, let us consider the case where k ‖ ez (θk = 0) and ekλ = e+1. This
corresponds to the situation where a laser field propagates along the z direction and it is
circularly polarized. Since

Y
(+1)
1,±1(0, φk) =

√
3

8π
ê±

Y
(+1)
1,0 (0, φk) = 0,

7Wigner-Eckart Theorem:

〈α, J,M |T (k)
q |α′, J ′,M ′〉 = (−1)J−M

(
J k J ′

−M q M ′

)
〈α, J ||T (k)||α′, J ′〉 (4.42)

where T
(k)
q is an irreducible tensor operator and J ,M and J ′, M ′ are angular momentum quan-

tum numbers. α and α′ are additional quantum numbers required to completely identify the states.
〈α, J ||T (k)||α′, J ′〉 is called ”reduced matrix element” and

(
J k J ′

−M q M ′

)
(4.43)

is called ”Wigner 3j-Symbol”. It can be described by using a Clebsch-Gordon coefficient
(j1, j2,m1,m2|j1, j2, j, m).

(
J k J ′

−M q M ′

)
=

(−1)k−J+M ′

√
2J ′ + 1

(J, k,−M, 1|J, k, J ′,−M ′) (4.44)
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when k ‖ z, only the ∆M = ±1 transitions (σ+ and σ− transitions) are possible and the
∆M = 0 transition (π transition) is impossible for any laser polarization. In addition,
due to the circular polarization ê+1 only M = +1 term survives and the matrix element
is given by

〈b; nkλ − 1|H(−)
int |a; nkλ〉E1 = ie

√
~nkλωk

2V ε0

〈b|r(1)
+1|a〉, (4.49)

〈b; nkλ + 1|H(+)
int |a; nkλ〉E1 = ie

√
~(nkλ + 1)ωk

2V ε0

〈b|r(1)
+1|a〉, (4.50)

which means that the transition which satisfies ∆M = 1 occurs.

4.2.3 M1 transition

The M1 transition is induced by the term in (4.35) with µ = 0 and J=1. With the aid of
(4.21), (4.37) and j1(kr) ' kr/3 (when kr ¿ 1)8,

a
(0)
1,M(r) · p ' 1

3
krY1,1,M(θr, φr) · p

= −i
k√
24π

(r× êM) · p

= i
k√
24π

êM · (r× p)

= i
k√
6π

êM ·
(
~
2
L

)
. (4.52)

Since L is related to the magnetic momentum operator by

(
~
2

)
L = −

(mc

e

)
µL, (4.53)

the matrix element is given by

〈b; nkλ − 1|H(−)
int |a; nkλ〉M1 = −i

√
~nkλωk

2V ε0

√
8π

3

+1∑
M=−1

(ekλ ·Y(0)
1,M(θk, φk))êM · 〈b|µL|a〉,

(4.54)

〈b; nkλ + 1|H(+)
int |a; nkλ〉M1 = i

√
~(nkλ + 1)ωk

2V ε0

√
8π

3

+1∑
M=−1

(ekλ ·Y(0)
1,M(θk, φk))êM · 〈b|µL|a〉.

(4.55)

8In addition, next property of the scalar triple product is used.

a · (b× c) = b · (c× a) = c · (a× b). (4.51)
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Since µL is the first rank irreducible tensor, the selection rule is given by

∆J = 0,±1 ∆M = 0,±1, Ja + Jb ≥ 1, πa = πb, (4.56)

where πM1 = 1 is used. The M1 transition is allowed between states which has same
parity. It is, then, sometimes used to induce the RF transition between the magnetic
sublevels in a same J state.

4.2.4 E2 transition

The E2 transition is induced by the term in (4.35) with µ = +1 and J=2. With the aid
of (4.21), (4.37) and j2(kr) ' (kr)2/15 (when kr ¿ 1),

a
(+1)
2,M (r) · p '

(
1

5
(kr)Y

(1)
2,M(θr, φr) +

√
6

15
(kr)Y

(−1)
2,M (θr, φr)

)
· p

=

√
1

15
(kr)Y2,1,M(θr, φr) · p

=

√
1

20π





r
(1)
±1p

(1)
±1 (M = ±2)

1√
2

(
r
(1)
±1p

(1)
0 + r

(1)
0 p

(1)
±1

)
(M = ±1)

1√
6

(
r
(1)
−1p

(1)
+1 + 2r

(1)
0 p

(1)
0 + r

(1)
+1p

(1)
−1

)
, (M = 0)

(4.57)

where r(1) and p(1) are the first rank irreducible tensor. Due to the transversality (4.22),

p
(1)
q′ r

(1)
q + p

(1)
q r

(1)
q′ = r

(1)
q p

(1)
q′ + r

(1)
q′ p

(1)
q . Thus we find

〈b|r(1)
q p

(1)
q′ + r

(1)
q′ p(1)

q |a〉
=

(m

i~

){
〈b|r(1)

q [r
(1)
q′ , Hatom]|a〉+ 〈b|r(1)

q′ [r(1)
q , Hatom]|a〉

}

= 2Ea

(m

i~

)
〈b|r(1)

q r
(1)
q′ |a〉 −

(m

i~

){
〈b|r(1)

q Hatomr
(1)
q′ |a〉+ 〈b|r(1)

q′ Hatomr(1)
q |a〉

}

(4.58)

〈b|p(1)
q′ r(1)

q + p(1)
q r

(1)
q′ |a〉

=
(m

i~

){
〈b|[r(1)

q′ , Hatom]r(1)
q |a〉+ 〈b|[r(1)

q , Hatom]r
(1)
q′ |a〉

}

= −2Eb

(m

i~

)
〈b|r(1)

q r
(1)
q′ |a〉+

(m

i~

){
〈b|r(1)

q Hatomr
(1)
q′ |a〉+ 〈b|r(1)

q′ Hatomr(1)
q |a〉

}
.

(4.59)

From the summation of (4.58) and (4.59) and the transversality condition (4.22) is

〈b|r(1)
q p

(1)
q′ + r

(1)
q′ p(1)

q |a〉 = imωk〈b|r(1)
q r

(1)
q′ |a〉. (4.60)
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In addition, according to the definition of a tensor product of two irreducible tensor
operators 9,

Q
(2)
±2 = (r

(1)
±1)

2

Q
(2)
±1 =

√
2r

(1)
±1r

(1)
0

Q
(2)
±0 =

2√
6

{
r
(1)
+1r

(1)
−1 + (r

(1)
0 )2

}
. (4.61)

Using (4.57), (4.60) and (4.61), the matrix element of the E2 transition is

〈b; nkλ − 1|H(−)
int |a; nkλ〉E2 = −e

c

√
~nkλω3

k

8V ε0

√
4π

5

+2∑
M=−2

(ekλ ·Y(+1)
1,M (θk, φk))〈b|Q(2)

M |a〉,

(4.62)

〈b; nkλ + 1|H(+)
int |a; nkλ〉E2 =

e

c

√
~(nkλ + 1)ω3

k

8V ε0

√
4π

5

+2∑
M=−2

(ekλ ·Y(+1)
1,M (θk, φk))〈b|Q(2)

M |a〉.

(4.63)

Since Q
(2)
M is the second rank irreducible tensor, the selection rule is given by

∆J = 0,±1,±2, ∆M = 0,±1,±2, Ja + Jb ≥ 2, πa = πb. (4.64)

When we desire to carry out the ∆M = m transition, we should choose proper k
(incident direction) and ekλ (polarization) which does not eliminate Y

(1)
2,m · ekλ. For the

E2 transition, Y
(1)
2,M are given by the following equations.

Y
(1)
2,±2(θk, φk) = ∓ e±iφk

√
40π

sin θk(7− 5 sin2 θk)ê±1 −
√

5

16π
e±2iφk cos θk sin2 θkê0

∓
√

5

96
e±3iφk sin3 θkê∓1

Y
(1)
2,±1(θk, φk) =

5 cos3 θk√
40π

ê±1 ∓ e±iφk

√
20π

sin θk

{
3− 2 sin θk(5 sin2 θk − 4)

}
ê0

+

√
5

8π
e±2iφk cos θk sin2 θkê∓1

Y
(1)
2,0(θk, φk) =

√
3

80π
e−iφk(5 sin θk cos2 θk)ê+1 +

√
3

40π
cos θk(1 + 4 sin2 θk)ê0

−
√

3

80π
e±iφk(5 sin θk cos2 θ)ê−1. (4.65)

9

V
(K)
Q = [A(k)B(k′)](K)

Q

=
√

2K + 1
∑

q,q′
(−1)−k+k′−Q

(
k k′ K
q q′ −Q

)
A(k)

q B
(k)
q′
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For example, when the incident direction of the excitation laser is parallel to the z axis,
i.e., θk = 0,

Y
(1)
2,±2(0, φk) = 0 (4.66)

Y
(1)
2,±1(0, φk) =

5√
40π

ê±1 (4.67)

Y
(1)
2,0(0, φk) =

√
3

40π
ê0. (4.68)

Since the linear polarization along the z direction is impossible when k ‖ z, Y
(1)
2,0(0, φk) ·

ekλ ≡ 0. As a result, only the ∆M = ±1 transition is possible in this case.

4.2.5 M2 transition

The M2 transition is induced by the term in (4.35) with µ = 0 and J=2. In the following,
we carry out calculations in case of M = ±2, which can be easily applied to the case of
M = ±1 and 0. With the aid of (4.21), (4.37) and j2(kr) ' (kr)2/15 (when kr ¿ 1),

a
(0)
2,±2(r) · p '

(
k2

15

)
r2Y2,2,±2(θr, φr) · p

= ±k2

15

√
5

4π
r
(1)
±

{
r
(1)
±1ê

(1)
0 − r

(1)
0 ê±

}
· p

= −i
k2

15

√
5

4π
r
(1)
±1(r× ê

(1)
±1) · p

= −i

(
2mc

e

)(
k2

15

) √
5

4π
r
(1)
±1µ

(1)
±1, (4.69)

where (4.53) is used. Here, we define a second rank irreducible tensor T
(2)
q which is a tensor

product of two irreducible first rank tensor r
(1)
q (position) and µ

(1)
q (magnetic moment)

operators and described by

T
(2)
±2 = r

(1)
±1µ

(1)
±1

T
(2)
±1 =

1√
2
(r

(1)
±1µ

(1)
0 + r

(1)
0 µ

(1)
±1)

T
(2)
0 =

1√
6
(r

(1)
+1µ

(1)
−1 + 2r

(1)
0 µ

(1)
0 + r

(1)
−1µ

(1)
+1).

By carrying out same calculations for M = ±1 and 0, the matrix elements of the M2
transition are given by

〈b; nkλ − 1|H(−)
int |a; nkλ〉M2 = − i

c

√
~nkλω3

k

2V ε0

(
4

15

)√
5π

+2∑
M=−2

(ekλ ·Y(0)
1,M(θk, φk))〈b|T (2)

M |a〉,

(4.70)
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〈b; nkλ + 1|H(+)
int |a; nkλ〉M2 = − i

c

√
~(nkλ + 1)ω3

k

2V ε0

(
4

15

)√
5π

+2∑
M=−2

(ekλ ·Y(0)
1,M(θk, φk))〈b|T (2)

M |a〉.

(4.71)

As in the case of E2 transition, since T
(2)
M is a second rank irreducible tensor, the selection

rule is given by

∆J = 0,±1,±2, ∆M = 0,±1,±2, Ja + Jb ≥ 2, πa = −πb. (4.72)

For the M2 transition, Y
(0)
2,M are given by the following equations.

Y
(0)
2,±2 =

√
5

16π
e±iφk sin θk

(√
2 cos θkê±1 ± sin θke

±iφk ê0

)
(4.73)

Y
(0)
2,±1 = ∓1

4

√
5

6π

{
(3 cos2 θk − 1)ê±1 ±

√
6 cos θk sin θke

±iφk ê0 −
√

3 sin2 θke
±2iφk ê∓

}

(4.74)

Y
(0)
2,0 = −1

4

√
15

π
cos θk sin θk(e

−iφk ê+1 + eiφk ê−1) (4.75)

One of the important points in these equations is that in order to observe the ∆M = 0
transition we should let θk 6= 0 and π/2.

Let us consider, as an example, the case where θk = π/4 and φk = 0 and the polar-
ization is parallel to the y axis, i.e., êkλ ‖ êy which satisfies the condition k · êkλ = 0.
Then,

êkλ ·Y(0)
2,±2(0, φk) = i

√
5

16π
(4.76)

êkλ ·Y(0)
2,±1(0, φk) = ±1

8

√
5

6π
(
√

3− 1) (4.77)

êkλ ·Y(0)
2,0(0, φk) = − i

8

√
15

π
. (4.78)

Thus all of the ∆M = 0,±1,±2 can be observed while the relative transition strengths
are different.

4.3 Light shift – Far Off Resonance Trap (FORT)

The evaluation of transition matrix elements also enables the estimation of light shift, i.e.
the trap depth of a FORT.

When atoms are in a laser field, according to the perturbation theory, the laser field
causes a shift of an atomic energy level (∆E). This is called “light shift” and can be
described as

∆E =
∑

b( 6=a)

|〈b|Hint|a〉|2
Ea − Eb

. (4.79)
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Here we assume that Hint describes a dipole interaction between atoms and a laser field,
|a〉 is the level considered and |b〉 is the energy levels which connect to a through the
interaction Hint. Ea and Eb are the energies of |a〉 and |b〉, respectively.

We can utilize this property for trapping atoms in space because ∆E in (4.79) can be
written by the intensity of the laser field I(r),

U(r) ≡ ∆E(r) =
e2I(r)

ε0~c

[ ∑

b(6=a)

|〈b|r|a〉|2 ωab

ω2
ab − ω2

]
. (4.80)

This equation shows that we can trap atoms because a position-dependent potential U(r)
makes the force F(r) to atoms,

F(r) = −∇U(r). (4.81)
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Figure 4.1: Whether we can trap atoms or not depends on the sign of the light shift.

Note that the sign of this potential could be both positive and negative, depending on
the sign of parentheses [] in (4.80). If it is negative (−), the potential depth is lowest at a
focal point and we can trap atoms. But if it is positive (+), we can not trap them because
the focal point is the most unstable point for atoms (Fig.4.1). Hence, before trying to
trap 3P2 atoms in a FORT, it is better to calculate the trap depth or its sign at least. In
the following discussion, the approximate calculation will be carried out.
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4.3.1 Numerical estimation

From (4.79) and (4.31)

∆E =
∑

b(6=a)

|〈b|Hint|a〉|2
Ea − Eb

=
∑

b( 6=a)

|〈b|H(+)
int + H

(−)
int |a〉|2

Ea − Eb

. (4.82)

By using (4.40), light shift can be calculated as

∆E(r) =
∑

b(6=a)

[ |〈b; n− 1|H(−)
int |a; n〉|2

(Ea + n~ω)− {Eb + (n− 1)~ω} +
|〈b; n + 1|H(+)

int |a; n〉|2
(Ea + n~ω)− {Eb + (n + 1)~ω}

]

=
∑

b(6=a)

[ |〈b; n− 1|H(−)
int |a; n〉|2

Ea − Eb + ~ω
+
|〈b; n + 1|H(+)

int |a; n〉|2
Ea − Eb − ~ω

]

'
∑

b(6=a)

[e2~ωn

2ε0V
|ê · 〈b|r|a〉|2

{ 1

Ea − Eb + ~ω
+

1

Ea − Eb − ~ω
}]

=
∑

b(6=a)

[n~ωc

V

e2

2ε0~c
|ê · 〈b|r|a〉|2 2ωab

ω2
ab − ω2

]

=
∑

b(6=a)

[e2I(r)

ε0~c
|ê · 〈b|r|a〉|2 ωab

ω2
ab − ω2

]
, (4.83)

where I(r) = n~ωc/V and n + 1 ' n because the photon number n is very large in the
present system. ê is a polarization vector (unit vector) of the FORT beam and r is parallel
to the direction of an induced dipole moment. We use a linearly polarized laser beam.
Thus, if we let the polarizing direction be z-axis10,

ê · 〈b|r|a〉 = 〈b|r(1)
0 |a〉. (4.84)

The light shift is given by

∆E(r) =
e2I(r)

ε0~c
∑

b( 6=a)

[
|〈b|r(1)

0 |a〉|2 ωab

ω2
ab − ω2

]
. (4.85)

It is very difficult to numerically calculate this equation because we have to consider
all levels (

∑
b( 6=a)) which connect with the 3P2 state through the interaction Hint.

Here, instead, we will carry out the calculation by using the information about a few
levels given in [60]. Of course, this is not good enough to determine whether we can
trap 3P2 atoms in a FORT or not. However in order to estimate the higher limit of the
potential depth, it is worth carrying out.

By using the Wigner-Eckart theorem,

〈b|r|3P2〉 = 〈b, J,M |r(1)
0 |3P2, 2,M

′ = (0,±1,±2)〉
= (−1)J−M

(
J 1 2
−M 0 M ′

)
〈b, J ||r(1)||3P2, 2〉. (4.86)

10Details of tensor analysis for E1 transition will be discussed in 2.3.5.
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In our experiment, only the case of M − M ′ = ∆M = 0 has to be considered because
a Wigner 3j-symbol doesn’t vanish only when M −M ′ = ∆M = 0. In this case, (4.85)
becomes

∆E =
e2I0

ε0~c

(
J 1 2
−M 0 M ′

)2

|〈a, J ||r(1)||3P2, 2〉|2 ωab

ω2
ab − ω2

(4.87)

where I0 is the intensity at the focal point.
The theoretical values of reduced matrix elements are listed in Table 4.1 [60]. Our

experimental parameters are I0 = 2.1× 1010 W/m2(532 nm, 6.4 W, beam waist=14 µm).

Table 4.1: Reduced matrix elements of Yb [60][atomic unit:a0]

3D1(5d6s) 3D2(5d6s) 3D3(5d6s) 1D25d6s) 3S1(6s7s)

3P2(6s6p) 0.60 2.39 6.12 0.38 5.05

Table 4.2: Light shift [MHz]

3D1(5d6s) 3D2(5d6s) 3D3(5d6s) 1D2(5d6s) 3S1(6s7s) Total

3P2(6s6p)(M=±2) − 0.50 1.31 0.0226 − 1.84

3P2(6s6p)(M=±1) 0.0222 0.125 2.10 0.00565 7.65 9.90

3P2(6s6p)(M=0) 0.0296 0 2.36 0 10.2 12.6

According to this estimation, light shifts are positive for all magnetic sublevels (1.84,
9.90 and 12.6 MHz). This means that we can not trap any atoms in the 3P2 state.
However, in this study, we succeeded in trapping 3P2 atoms in a FORT at 532 nm. This
means that the light shift for the 3P2 state is negative and that the influence from upper
levels we did not include in above calculations is very large.
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Chapter 5

Line shift and broadening

Laser spectroscopy is one of the strongest techniques to understand the microscopic sys-
tems such as atoms, molecules and ions. Absorption and emission spectra include rich
information about the atomic internal structure and interaction between atoms and an
external field. Usually, such effects appear as line shifts and broadenings of spectra. Thus,
in order to extract information as much as possible from the spectrum, we have to under-
stand the mechanism of the line shift and broadening, which is the main purpose of this
chapter.

5.1 Doppler shift and recoil shift

Let us consider the relativistic description of energy

E =
√

(pc)2 + (m0c2)2, (5.1)

where p and m0 are the atomic momentum and rest mass and c is the speed of light.
Considering the case where an atom in the initial state (momentum pi) is excited to the
final state (momentum pf) by absorbing a photon (~k), the conservation of energy and
momentum are

hνL +
√

(pic)2 + (m0c2)2 =
√

(pfc)2 + (m0c2 + hν0)2 (5.2)

pi + ~k = pf , (5.3)

where νL and k denote the frequency and wavenumber vector of the excitation laser and
ν0 is the resonance frequency between states i and f. Substituting (5.3) into (5.2) and
taking some leading terms,

hνL = hν0 + vi · (~k) +
(~k)2

2m0

−
(

v2
i

2c2

)
hν0 + · · · , (5.4)

where vi is a velocity vector of atoms in the initial state. Due to the second, third and
forth terms, the resonance frequency is shifted from ν0 and broadened. In the following,
details of these terms will be discussed.
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First-order Doppler shift - Doppler broadening

Let us consider that the laser (frequency νL) is irradiated to an atom which moves with
the velocity vi. Due to the Doppler effect, atoms absorb the photon whose frequency is,
in the rest frame,

νL = ν0 +
νL

c
(ek · vi), (5.5)

where ek denotes the unit vector of k. This is the second therm in (5.4), which is known
as the first-order Doppler shift. However, due to the linear dependence on v, the first-
order Doppler shift are observed not as a frequency shift but as a broadening. Under
thermal equilibrium conditions, the velocity of atoms is governed by the Maxwell velocity
distribution,

p(vk)dvk =
1

vp

√
π

exp

[
−

(
vk

vp

)2
]

dvk, vp =

√
2kBT

m
, (5.6)

where vp is the most probable velocity and vk = ek ·vi. Thus substituting (5.5) into (5.6)
and integrating it by vk, the lineshape I(ν) is described as

I(νL) = I0 exp

[(
c

vp

νL − ν0

ν0

)2
]

, (5.7)

and its full width at half maximum is

δνFWHM = 2ν0

√(
2kBT

mc2

)
ln 2. (5.8)

For the 1S0↔3P2 transition (507 nm) in 174Yb, the Doppler width (FWHM) is given by

δνFWHM[kHz] = 32.0×
√

T [µK]. (5.9)

Second-order Doppler shift

The next frequency shift in (5.4) related to the atomic velocity vi is the fourth term, which
is known as the second-order Doppler shift (SODS). Due to its quadratic dependence on
vi, the SODS leads to a frequency shift. For the 1S0↔3P2 transition (507 nm) in 174Yb
at 1 µK (vi = vp = 1 cm/sec), it is

δνSODS =

(
v2

i

2c2

)
ν0

= 3.1× 10−7 Hz. (5.10)

Thus, the SODS can be safely neglected in this work. In general, the SODS yield a
large influence to the high-energy transition in light atoms such as the UV transition in
hydrogen [61].
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Recoil shift

The third term in (5.4) corresponds to the frequency shift caused by the momentum of
a photon ~k received by an atom. It is called a recoil shift. For the 1S0↔3P2 transition
(507 nm) in 174Yb, it is given by

δνrecoil =
~k2

4πm
= 4.423 kHz. (5.11)

5.2 Temperature shift

When atoms are confined in a trap, vibrational energy levels of the trap are occupied,
depending on the Maxwell-Boltzmann distribution at an atomic temperature T . In such a
case, the peak position of the spectrum does not correspond to the bottom of the trap but
to the peak position of the Maxwell-Boltzmann distribution in a trap [62]. As a result,
the resonance frequency slightly shifts except for the case of the magic wavelength. Such
a spectral shift which is referred to as a temperature shift was introduced in [63] and is
briefly summarized here.

According to the Fermi’s golden rule, the absorption spectrum is given by

I(ω) =
∑

i,f

ρi|〈f |V |i〉|2δ(ω − ωf,i), (5.12)

where ρi is the distribution function for the trapped atoms, |i〉 = |g〉 |n〉 and |f〉 = |ex〉 |m〉
are the initial and final states of an atom. |n〉g = |nx, ny, nz〉g and |m〉ex = |mx,my,mz〉ex
describes the vibrational levels of an atom in a harmonic trap. Let the incident direction
of the excitation laser be x. Then the interaction V between an atom and an excitation
laser can be given by

V =
∑
ex

(|ex〉Tex exp (iκx) 〈g|+ H.c.) , (5.13)

where Tex describes the transition operator (rank 2 irreducible tensor in case of the M2
transition) and κ describes the wave number of the excitation laser.

Atoms in the ground state is in a certain vibrational level of a harmonic trap. Such
atoms can be excited to one of the vibrational levels in a harmonic trap. Then, strictly
speaking, the spectral shape I(ω) is obtained by summing the overlap integral over possible
vibrational levels in (5.12). However, when the number of atoms N is large as in this
experiment N ∼105, such calculations are not realistic.

We think of the semiclassical approximation which is valid when the temperature of
atoms is so high that the semiclassical approximation is valid. In this approximation, we
can label atoms by the radius vector r and momentum vector p and the density of states
in the six-dimensional phase space is h−3. Then, the number density of atoms ρ(r,p, T )
in the phase space is

ρ(r,p, T ) =
1

h3

1

eβ(Hg−µ) ± 1
, (5.14)
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where + and − correspond to the Fermi-Dirac distribution and the Bose-Einstein distri-
bution, respectively. For the present purpose, it is true that we have to consider only
the Maxwell-Boltzmann distribution. However, for the future convenience, we derive the
spectral shape for all distributions. Hg describes the energy of an atom in a harmonic
trap and given by

Hg,ex(r,p) =
p2

2M
+

MΩ2
g,ex(x

2 + λyy
2 + λzz

2)

2
, (5.15)

where M is the atomic mass, Ωg,ex is the trap frequency for the ground state and the ex-
cited state, respectively. The dimensionless parameters λy and λz describe the anisotropy
of the trap. Substituting (5.13), (5.14) and (5.15) into (5.12) and considering the energy
conservation gives

I(ω) = A

∫
ρ(r,p, T )δ(ω − ωr,p)d3rd3p, (5.16)

ωr,p =
M(Ω2

ex − Ω2
g)(x

2 + λyy
2 + λzz

2)

2~
+

pxκ

M
+ ωrec + ω0 (5.17)

where A = |Tex|2 and ωrec = ~κ2/M is the recoil energy of the excitation laser.
The delta function in (5.16) can be described as

δ(ω − ωr,p) =

(
M

κ

)
δ

[
px −

(
M

κ

){
ω − ωmax +

MΩ2
g

2~
mexr

2

}]
, (5.18)

where ωmax = ω0 + ωrec and mex = 1 − Ω2
ex/Ωg. Thus we can perform the integration of

px and let dpydpz = p cos φdpdφ, we find

I(ω) =

(
2πM

h3κ

) ∫
d3r

∫ ∞

0

pdp

e
( β

2M )p2−
"
−(βM

2κ2 )


ω−ωmax+
MΩ2

g
2~ mexr2

ff2

−βMΩ2
g

2
r2+βµ

#
±1

, (5.19)

where the integration of p is known as a polylogarithm Lin(x) which satisfies
∫ ∞

0

ksdk

ek−µ ± 1
= ∓Γ(s + 1)Li1+s(∓eµ), (5.20)

where Γ(x) is the gamma function. When s=0, Γ(1) = 1 and Li1(x) = − ln(1− x). Thus
the lineshape is given by

I(ω) =
A′(λy, λz)

16πα6Ω6
gp

5/2
×





∫ ∞

0

± ln

[
1± exp

[
βµ− y2 − p

(
ω − ωmax +

mexy
2

β~

)2
]]

y2dy

(+: Fermi,− : Bose)

∫ ∞

0

exp

[
βµ− y2 − p

(
ω − ωmax +

mexy
2

β~

)2
]

y2dy

(Maxwell)

(5.21)



5.3. COLLISION SHIFT AND BROADENING 64

5.3 Collision shift and broadening

Interactions between atoms leads to the line shifts and broadenings, which is known
as the collision shift and broadening. Studies of such shift and broadening have been
considerably improved [64, 65, 66, 67, 68] because the collisional line shift is a major part
in the inaccuracy of the present time and frequency clocks such as Cs or Rb fountains
[69, 70].

For bosons at very low temperatures, only s-wave scattering occurs which can be
characterized by the scattering length a. For a nondegenerate gas of bosons, the mean-
field energy due to elastic collisions between atoms shift the energy level of the atom,
which is given by

∆E = h

(
4~n
m

)
a11, (5.22)

where n is the density and a11 is the s-wave scattering length of the collision between
state 1 atoms. When atoms are excited to the state 2, the energy level of the 2 state is
also shifted due to the atomic interaction between atoms in the 1 state and 2 state. This
interaction can be characterized by the scattering length a12 and the shift of the energy
level of the 2 state is given by replacing a11 with a12in (5.22). As a result of shifts of
energy levels both of the 1 state and 2 state, the resonance frequency between these state
also shifts, which is give by the difference between them,

∆ν12 = (a12 − a11)
4~n1

m
, (5.23)

where n1 is the density of atoms in the 1 state. Since we do not consider the interaction
between atoms in the 2 state, (5.23) is valid for the weak excitation in which the 2 state
atoms interact only with the 1 state atoms. More rigorous and general description has
been traditionally given using the quantum Boltzmann equation, in which the collision
shift ∆νcol and the broadening ∆γcol are described by

∆νcol =
2~
m

∑
j

nj(1 + δ1j)(1 + δ2j)(a2j − a1j), (5.24)

∆γcol =
2~
m

∑
j

nj(1 + δ1j)(1 + δ2j)(a
2
1j + a2

2j)k, (5.25)

where δab is the Kronecker delta and ~k is the relative momentum of the colliding atoms.
~k = mvrel/2 where vrel = 4

√
(kBT )/(πm) is the mean relative velocity. Note that we

neglect the inelastic contributions between atoms in the state 1. As for Yb in a FORT,
only possible inelastic process is the three body recombination, which is negligibly small
[24]. In this study, we have to consider only the case in j = 1 in (5.24) and (5.25). Thus,
the collisional shift and broadening for Yb atoms at 1 µK is given by

∆ν[kHz] =
4~
m

(a12 − a11)n1

= 1.4494× 10−15 (a12 − a11)[nm]× n1 [cm−3] (5.26)
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∆γ[kHz] =
4~
m

(a2
11 + a2

12)k

= 1.554× 10−17 (a2
11 + a2

12)[nm2]× n1 [cm−3]×
√

T [µK]. (5.27)

For the typical parameters n1 = 5×1013 cm−3, a11 = 5.53 nm, a12 = −33 nm and T = 1
µK, the collision shift and broadening become 2.8 kHz and 0.87 kHz, respectively. Thus
both are relatively small if we compare them to other shifts and broadening. However,
collisional shift and broadening plays a significant role in a BEC spectrum.

5.4 Other shifts and broadenings

Interaction time broadening

Since the interaction time between atoms and an excitation pulse is finite, it also yields a
spectral broadening. Let us consider the square excitation pulse given by

f(t) =

{
E0 cos ω0t (−τ/2 < t < τ/2)

0 (otherwise)
, (5.28)

where E0 is the amplitude, ω0 is the laser frequency and τ is the interaction time. From
the inverse Fourier transformation of f(t), the power spectrum (of the positive frequency
component) is given by

|F (ω − ω0)|2 =

(
E0τ

2

)2
sin2[(ω − ω0)τ/2]

[(ω − ω0)τ/2]2
. (5.29)

The full width of half maximum (FWHM) of this spectrum is given by

∆νFWHM
int =

0.8859

τ
. (5.30)

Thus the laser frequency is broadened due to the finite interaction time τ . This is the
interaction time broadening. For example, a square excitation pulse for 1 ms has the
interaction time broadening of 886 Hz. In this work, the pulse width of the excitation
laser is at least 10 ms (∆νFWHM

int = 89 Hz). Hence, it is negligible.

Saturation broadening

Let us consider N two-level atoms. By using the Einstein coefficients A and B, the sta-
tionary state including the spontaneous emission and stimulated emission and absorption
of the radiation field ρ(ν) is given by

(Bρ(ν) + A)N2 = Bρ(ν)N1, (5.31)

where N1 and N2 are the number of atoms in the ground and excited state, respectively.
Here we introduce the saturation parameter S defined by

S =
2B

A
ρ(ν). (5.32)
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From (5.31), the population N2 is written as

N2 =
S

2(1 + S)
N. (5.33)

When we consider the atomic transition, the frequency dependence of absorption B is
given by the Lorentzian function. Hence,

S =
I

Isat

( 1
4πτ

)2

( 1
4πτ

)2 + (ν − ν0)2
, Isat =

πhc

3λ3τ
(5.34)

where τ is the lifetime of the excited state, I and ν are the intensity and frequency of the
excitation laser. Substituting (5.34) into (5.33), we have

N2 =
I/Isat

2(1 + I/Isat)

(γ
2

√
1 + I/Isat)

2

(γ
2

√
1 + I/Isat)2 + (ν − ν0)2

, (5.35)

where γ = 1/(2πτ). This is a Lorentzian function with the broadened linewidth

γ′ = γ
√

1 + I/Isat. (5.36)

Thus the observed linewidth γ′ becomes broader than the original linewidth by a factor
of

√
1 + I/Isat which is known as saturation broadening (or power broadening).
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Chapter 6

Inelastic collisions in optically
trapped ultracold metastable
ytterbium

Optical trapping of dense and ultracold metastable 3P2 atoms has been successfully
demonstrated and their collisional properties in a FORT have been investigated.

Previously, several laboratories have realized laser cooling and trapping of 3P2 atoms
in a magnetic trap. In spite of successes of trapping of 3P1 atoms, evaporative cooling of
3P2 atoms in a magnetic trap turned out to be unsuccessful due to trap loss caused by
strong multichannel collision processes. The loss induced by multichannel collisions in a
magnetic trap can be overcome by employing a FORT. Thus we have first demonstrated
the optical trapping of Yb[3P2] atoms in every magnetic sublevel. Also, the trap frequency
for the atoms in the 3P2 state in a FORT was measured by using a parametric resonance
technique. Whether or not we can trap Yb[3P2] in a FORT at 532 nm was unknown
before this study because the precise calculation of transition strength between the 3P2

state and a lot of upper levels which include relativistic effects is difficult for heavy atoms
such as Yb. Moreover, during the course of the experiment, the light shift of magnetic
sublevels M = ±1,±2 of the 3D2 state was also determined. These experimental results
must be valuable for the precise theoretical calculations of Yb which is important, for
example, to understand the ultraprecise atomic clock using the clock transition between
the ground state and the metastable state in Yb.

By exciting pre-cooled Yb[1S0] atoms in a crossed FORT, we have successfully obtained
high density ultracold metastable Yb[3P2] atoms . These atoms are prepared at a density
of 2×1013 cm−3 and at a temperature of less than 2 µK. Although in principle a PSD
could be increased by further evaporative cooling of the Yb[3P2] atoms to achieve a BEC,
we found this impossible due to the large trap loss.

We, then, next measured the trap lifetime of atoms in the 3P2 state trapped in a
FORT and quantitatively measured the inelastic collision rate constant. Considering
the suppression of multichannel collisional loss in a FORT which can trap atoms in every
magnetic sublevel of the 3P2 state with zero magnetic field, the observed inelastic collision
rate is anomalously large. As a result, a different inelastic collision process – fine-structure
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changing collisions – is strongly suggested. The previous theoretical works revealed details
of fine-structure changing transitions in collisions of Mg[3Pj], O[3Pj], Sc[2Dj], and Ti[3Fj]
atoms with closed-shell atoms at a high temperature. However, there has not been no
theoretical work on the fine-structure changing collisions between atoms in the 3P2 state at
ultralow temperature achieved in the present work. As our experimental results suggest,
further theoretical investigation is warranted.

6.1 Optical trapping of Yb atoms in the 3P2 state

6.1.1 Preparation and detection of atoms in the 3P2 state in the
FORT

Basic procedure

Our typical procedure to prepare and detect atoms in the 3P2 state is summarized in Fig.
6.1. At the first stage A, we prepare cold 174Yb atoms in the ground state in a FORT by
the method described in Chap. 2 and briefly summarized here. With about 10 s loading,
we typically collect 107 Yb atoms in the ground state at a temperature below 50 µK by
the MOT using the narrow intercombination transition 1S0↔3P1. These atoms are then
transferred to a single or crossed FORT created by focused diode-pumped solid state 10
W-lasers at 532 nm. After carrying out evaporative cooling by gradually reducing the trap
depth, we typically have 106 atoms at a temperature of 30 µK in a single FORT. When
we use a crossed FORT configuration and perform evaporative cooling, a temperature of
atoms reaches below 1 µK.

At the next stage B, we optically excite atoms to the 3P2 state in a FORT. We use
the intermediate 3D2 state for the excitation (transition linewidth: 346 kHz [71]) and the
subsequent spontaneous decay to the 3P2 state with the lifetime 460 ns of the 3D2 state.
From the 3D2 state, about 10% of atoms can decay to the 3P2 state by the spontaneous
emission. Although other atoms decay to the 3P1 state, they immediately decay to the
ground state with the lifetime 875 ns of the 3P1 state and are re-excited to the 3D2 state.
Thus, after iterating this excitation cycle for several times, we can transfer all atoms to
the 3P2 state typically within 5 ms. In order to efficiently excite atoms, we stabilize a
blue GaN laser diode (404 nm) by an external cavity laser diode system combined with
an optical feedback technique (see section 2.4.3). The resulting linewidth is narrowed to 1
MHz for 0.5 s. The excitation laser is superposed with the FORT laser (see Fig. 6.2) and
the peak intensity at atoms reaches 140 W/cm2. Just after the excitation, we irradiate a
short blast pulse which blows remaining atoms in the ground state by using the strong
1S0↔1P1 transition.

The 1S0↔3D2 transition (404 nm) is the electric quadrupole (E2) transition whose
properties are summarized in Table.6.1. In this experiment, as shown in Fig. 6.2(top),

we set ~e404 ‖ z (or ~e404 ⊥ z) and ~ek ‖ x, where ~e404 and ~ek = ~k/|~k| are the polarization
and the wavenumber vectors of the 404 nm excitation laser. Thus atoms are excited to
the 3D2, m = ±1 and m = ±2 in case of ~e404 ‖ z and ~e404 ⊥ z, respectively due to the
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Figure 6.1: Experimental procedures to excite atoms in the 3P2 state. Absorption images
of atoms in the ground state at stages (A), (B) and (E) are also shown. (A): Yb atoms
trapped in a MOT are transferred to the FORT and then are excited to the 3P2 state in
the FORT via the intermediate 3D2 state and subsequent spontaneous decay (3D2→3P2)
(B). Since all atoms are now in the 3P2 state, no atoms are observed in the absorption
image (B) of atoms in the ground state. (C): After the excitation, metastable atoms are
left in the FORT during the holding time t. (D): In order to measure temperature and
the number of atoms by using an absorption imaging, metastable atoms are repumped to
the ground state by 770 nm (3P2 ↔3 S1) and 649 nm (3P0 ↔3 S1) laser pulses of 100 µs
and then atoms are detected (E).
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Figure 6.2: (Top) Polarizations of the excitation laser (404 nm) and FORT laser are shown
for two cases used in this experiment. (Bottom) Relative ratio of transition probability via
spontaneous emission from the 3D2 state to the 3P2 state are shown for two configurations
indicated above.
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selection rule (see Chapter 4). Subsequently, atoms decay to the magnetic sublevels of
the 3P2 state |m|=0, 1, and 2 with the transition ratio shown in Fig. 6.2(bottom).

At the stage C, we hold metastable atoms in a FORT for a time t. Then, at the stage
D, in order to measure the temperature and the number of atoms in the 3P2 state with
a time-of-flight (TOF) technique, we rapidly repump all the metastable 3P2 atoms to the
ground state after a TOF time. A 770 nm (3P2↔3S1) resonant pulse excites atoms from
the 3P2 state to the 3S1 state, from which all the 3P2,

3P1, and 3P0 states are populated
through spontaneous decay. By simultaneous application of a 649 nm (3P0↔3S1) resonant
pulse, all atoms return through the 3P1 state to the ground state where we can use an
absorption imaging technique using the strong cyclic 1S0↔1P1 transition at the stage
E. Since 100 µs duration for the repumping procedure is short enough compared with a
typical TOF time, we can safely regard that the observed atomic distribution precisely
reflects that of atoms in the 3P2 state.

Table 6.1: Important values of the 1S0↔3D2 transition [71].

1S0↔3D2

Wavelength λ 404 nm

Lifetime τ 460 ns

Natural linewidth
Γ

2π
=

1

2πτ
346 kHz

Saturation Intensity Isat =
πhc

3λ3τ
0.69 mW/cm2

Doppler Broadening at 1 µK (FWHM) δνD 40 kHz

Excitation rate (1S0↔3D2)

Let us calculate the excitation rate of the 1S0↔3D2 (E2) transition. From the Fermi’s
golden rule, the average transition rate Rab from one state |a〉 to the other state |b〉 is
given by

Rab =
2π

~2
|〈3D2|Hint|1S0〉|2

∫ ∞

0

δ(ω − ωab)g(ω)dω (6.1)

where g(ω) is the normalized Lorentzian lineshape

g(ω) =
γ/2π

(ω − ωab)2 + γ2/4
. (6.2)
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Here γ/2π is the linewidth of the (laser or atomic) spectrum. Substituting a squared
matrix element in (4.62) for this equation and using the relation I = n(~ω)c/V where I
is a laser intensity, we have

|〈3D2|Hint|1S0〉|2 =
ω2e2

16ε0c3
I|〈3D2|Q(2)|1S0〉|2. (6.3)

As for the matrix element 〈3D2|Q(2)|1S0〉, we have to consider the magnetic sublevels of
the 3D2 state. In other words, we should calculate

〈3D2, J = 2,M |Q(2)|1S0, J
′ = 0,M ′ = 0〉. (6.4)

We can use the Wigner-Eckart theorem to factor (6.4) because Q(2) is an irreducible tensor.
For any possible transitions from the 1S0 state to the 3D2 state, the matrix element takes
the same value because

(
2 2 0
−M q(= M) 0

)2

=
1

5
. (M = −2,−1, 0, 1, 2). (6.5)

Thus the matrix element can be calculated as

|〈3D2, J = 2,M |Q(2)|1S0, J
′ = 0,M ′ = 0〉|2 =

( 1√
5
〈3D2, 2||Q(2)||1S0, 0〉

)2

. (6.6)

The transition rate Rab is obtained by (6.1) and (6.6),

Rab(ω) = I
2π

~2

ω2e2

8ε0c3

( 1

πγ

)( 1√
5
〈3D2, 2||Q(2)||1S0, 0〉

)2

. (6.7)

For numerical computations of the transition rate Rab, a reduced matrix element is the
only unknown parameter. It is theoretically calculated in [71] for the 1S0 →3D2 transition.

1√
5
〈3D2, 2||Q(2)||1S0, 0〉 ' 0.5(4)a2

0 (theory) (6.8)

In this study, the peak intensity of the 404 nm excitation laser I(= 2P/(πw2
0)) is 140

W/cm2(P = 2 mW, w0 = 30 µm) and the linewidth of the 1S0↔3D2 transition is 1/γ
= 460 ns. Therefore the excitation rate at the resonant frequency can be computed as
Rab = 66 kHz.

By using this result, let us simulate the excitation process. The rate equations are

dNS(t)

dt
= −RexNS(t) + RP1NP1(t) (6.9)

dND(t)

dt
= RexNS(t)−RDND(t) (6.10)

dNP1(t)

dt
= 0.88RDND(t)−RP1NP1(t) (6.11)

dNP2(t)

dt
= 0.12RDND(t) (6.12)



6.1. OPTICAL TRAPPING OF YB ATOMS IN THE 3P2 STATE 73

where NS(t), ND(t), NP1(t) and NP2(t) are the number of atoms of the 1S0,
3D2,

3P1 and
3P2 states, respectively. Constant RP1 , RD and Rex are 1/RP1 = 875 ns, 1/RD = 460
ns and Rex= 55 Hz1. 0.88 and 0.12 are the branching ratio of the 3D2 →3P1(0.88) and
3D2 →3 P2(0.12) transitions.

The results of numerical computations are shown in Fig. 6.3 as a function of excitation
time. According to this result, we can excite all atoms in the ground state to the 3P2

state in 3 ∼ 4 ms, which is almost consistent with an experimental result.
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Figure 6.3: Numerical simulations of the excitation 1S0↔3P2 through the 3D2 state. 3 ∼
4 ms is required to excite all atoms, which is consistent in an experimental result.

1The effect of saturation broadening is included.
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6.1.2 Polarizabilities of the 3D2 state
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Figure 6.4: Time sequence for the measurement of polarizabilities of the 3D2 state.

In a strong laser field, the energy levels of atoms shift (see section 4.3). Due to this
light shift, the resonance frequency of atoms in a FORT is shifted from the unperturbed
one. This is because the light shifts induced to atoms in the ground state and in the
excited state are, in general, different from each other 2. The coefficient α|a〉 of the light
shift to laser intensity I for the state |a〉 which is defined by

∆E|a〉 =
α|a〉
4

I, (6.13)

is called polarizability.
We determined the polarizability of the 3D2 state. The resonance frequency hν of the

1S0↔3D2 transition in a FORT is given by

hν = hν0 − I

4
(α|3D2〉 − α|1S0〉), (6.14)

where ν0 is the unperturbed resonance frequency. We measured dependence of shift of the
resonance frequency on the FORT-laser intensity, which corresponds to the measurement
of α|3D2〉 − α|1S0〉 in (6.14). Since the polarizability of the ground state α|1S0〉 can be
precisely estimated, we can determine α|3D2〉.

The time sequence of the measurement is schematically shown in Fig. 6.4. After
loading atoms in a single FORT, excitation spectra were taken for various FORT powers.
Frequency of the 404 nm excitation laser was scanned by changing the radio frequency
(RF) applied to the AOM which compensates the frequency difference between the trans-
fer cavity and the excitation laser (see section 2.4.3). Polarizabilities of two different
magnetic sublevels (M = ±1,±2) of the 3D2 state were measured by choosing the proper
polarization of the 404 nm excitation laser (see Fig. 6.2).

2By choosing a so-called “Magic wavelength”, we can cancel the difference of the light shift between
the ground state and the excited state. Such technique is crucially important in the frequency standard
and atomic clock experiment using neutral atoms in a FORT.
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Experimental results

The experimental results are shown in Fig. 6.5 for magnetic sublevels M = ±1 and ±2
of the 3D2 state. The excitation spectrum for different FORT powers are shown and
frequency shifts are clearly observed. By fitting Gaussian functions (solid lines) to the
data, we determined the resonance frequency of each peak. The shift of the resonance
frequency are summarized in Fig. 6.6. According to (6.14), both lines should coincide
at zero FORT power in zero magnetic field. In Fig. 6.6, two independently fitted lines
are shown. One can find that two lines coincide at zero FORT power, which proves that
the experimental results are consistent with (6.14). Using the polarizability of the ground
state, the polarizability of the 3D2 state are determined as listed in Table 6.2.

Table 6.2: Polarizabilities of the 3D2 state. FORT laser is linearly polarized at 532 nm (ω0

= 15 µm). The listed value for the 1S0 state is calculated by the information of 1S0↔1P1

and 1S0↔3P1 transitions and contributions of other upper levels are neglected.

State Polarizability (Hz· cm2/W)

3D2(M = ±2) +18

3D2(M = ±1) −23

1S0 −24
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Figure 6.5: Measurement of the polarizability of the 3D2 state. Atoms are excited to
(Left) M=±1 (Right) M=±2 of the 3D2 state. The resonance frequency shifts due to the
different polarizabilities between the ground state and the 3D2 (M=±1 and ±2) state.

1S0
�3D2,  |m| = 1

|m| = 2

Figure 6.6: Shift of the resonance frequency in Fig.6.5 are summarized. Resonance fre-
quency are plot as a function of the FORT powers. Solid lines are linear fits to data whose
slopes describe the difference of polarizabilities.
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6.1.3 Magnetic field compensation

Multichannel collisions in a magnetic field
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Figure 6.7: (Left): Multichannel collisions in a magnetic field could lead to a trap loss
in a FORT. Atoms can obtain the kinetic energy corresponding to the Zeeman splitting
via multichannel collisions. (Right): Such trap loss process can be suppressed in zero
magnetic field.

In a FORT which can trap atoms in all magnetic sublevels, we can keep trapping
of the 3P2 atoms even if multichannel collisions occur (Fig. 6.7(Right)). However, if a
large magnetic field exists in a trap region, the multichannel collision could lead to a trap
loss. This is because atoms may obtain large kinetic energy corresponding to a Zeeman
splitting ∆EZeeman between two potentials for two different spin states. If this kinetic
energy is larger than the trap depth, atoms could escape from the trap as shown in Fig.
6.7(Left). We, then, first measured the residual magnetic field at the trap region and
canceled it by additional coils.
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Figure 6.8: Measurement of the residual magnetic field. Zeeman splittings of the 3P1 state
were used. In order to remove the light shift, we turned off the FORT laser during the
excitation.

To measure the magnetic field at the trap region, the Zeeman splitting of the 1S0↔3P1

transition (g = 1.49, 2.08 MHz/G) was used. The experimental procedure is schematically
shown in Fig. 6.8. After evaporative cooling, we irradiated an excitation laser pulse (556
nm). To remove the light shift, the FORT laser was turned off during the excitation.
After the excitation, 10 ms was required to open the mechanical shutter for an imaging
system.

Figure 6.9 is the observed spectrum before canceling the residual magnetic field. The
Zeeman splitting of abut 2 MHz was detected, which corresponds to the magnetic field
of 0.9 G. Then, by adjusting currents of correction coils for x, y, z axes, we cancelled
the residual magnetic field step by step as shown in Fig. 6.10. As a result, the residual
magnetic field has been removed below 0.03 G which corresponds to a trap depth of 3 µK.
Since the measurement of trap loss of atoms discussed later was carried out in a trap of
193 µK, we regard the trap loss due to the multichannel collisions should be suppressed.
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m = -1 m = 0 m = +1

Figure 6.9: Zeeman splitting of the 3P1 state due to the residual magnetic field of 0.9 G.
The number of atoms in the ground state is plotted as a function of the frequency offset
of the excitation laser (556 nm).

x axis y axis

z axis x axis

Figure 6.10: Residual magnetic field was compensated step by step by using compensation
coils for x, y, z axes. Positions of the resonance frequency are plotted as a function of
current of compensation coils.
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6.1.4 Optical trapping of atoms in all magnetic sublevels of the
3P2 state in a FORT

To begin with, we had to know whether or not we can trap the Yb[3P2] atoms in a FORT
at 532 nm. We confirmed that atoms in all magnetic sublevels of the 3P2 state can be
optically trapped in a FORT at 532 nm. W e compared the number of atoms in a FORT
before and after the excitation of 1 ms to detect the untrapped state.

Due to the selection rule of the E2 transition, we can selectively excite atoms to the
3D2(m = ±2)→3P2(m = ±1 and ±2) and 3D2(m = ±1)→3P2(m = 0,±1,and ±2) by
changing the polarization of the excitation laser (see also Fig. 6.2). We compared the
number of atoms in these two cases. First, atoms were excited to the 3D2(m = ±2) state.
As shown in Fig. 6.11(Left), we have not observed any trap loss after the excitation.
This means that the 3P2(m = ±1 and ±2) states are trap states in the FORT at 532 nm.
Similarly, by exciting atoms in the 3D2(m = ±1) state, we confirmed that 3P2(m = 0)
state is also trap state (Fig. 6.11(Right)). Hence, we concluded that all magnetic sublevels
of the 3P2 state are trap states. As discussed later, we also see that this result is consistent
with the direct measurement of the polarizability of the 3P2 state using the 1S0↔3P2 direct
transition.
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Figure 6.11: The number of atoms in a FORT (532 nm) before and after the excitation of
atoms to the 3P2 state are compared to detect the untrapped state. The number of atoms
in the ground state (blue square) and both the 1S0 and 3P2 state (red circle) are shown.
No significant trap loss was observed, which indicates that all levels are the trap state.
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6.1.5 Trap frequency
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Figure 6.12: Time sequency of measurement of the trap frequency of the FORT for the
3P2 atoms

In the previous experiment, we confirmed that all magnetic sublevels of the 3P2 states
are trap states. Then, we next measured the trap depth.

In order to determine the trap depth of a FORT, parametric resonance is commonly
used. We regard a FORT potential as a harmonic potential. The atomic motion in a
harmonic trap can be described by

ẍ(t) = −ω2
0x(t), (6.15)

where x(t) is the position and ω0 is the characteristic frequency of a trap. Let us shake
the trap with the frequency ωe, that is,

ẍ(t) = −ω2
0(1 + h cos(ωet))x(t) (6.16)

where h is the modulation amplitude. This is known as a Mathieu differential equation.
When the shaking frequency ωe satisfies

ωe =
2ω0

n
, (6.17)

where n is a natural number, this system is known to become unstable due to the resonance
behavior. In such a case, atoms in a trap are strongly shaken and heated, which results
in the trap loss. We are able to determine the trap frequency via (6.17).

The trap frequency for the radial direction ωr in a FORT is given by

ωr =

√
4U0

mw2
0

, (6.18)
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where m is the atomic mass and w0 is the beam waist. The trap depth U0 is proportional to
the FORT laser power P (see (4.85)). In other words, from the (6.18), the trap frequency
ω2

r is proportional to the laser power P (∝ U0). Thus, we can experimentally realize (6.16)
by modulating the FORT power P by the AOM at frequency ωe.

The experimental time sequence is shown in Fig. 6.12. After exciting atoms to all of
the magnetic sublevels of the 3P2 state in a FORT, the FORT power P was modulated by
an AOM. The resonance frequencies were detected both as increasing atomic temperature
(i.e., distribution width) and the number of atoms in a trap.

Experimental results
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Figure 6.13: Parametric resonance. The number of atoms (red) and distribution width
of the atomic cloud (black) are plotted as a function of modulation frequencies. Two
resonance signals are clearly observed at 8.6 and 4.3 kHz.

Typical experimental results are shown in Fig. 6.13. The width of the atomic cloud
which corresponds to the atomic temperature and the number of atoms are plotted as a
function of modulation frequencies. Two resonance signals corresponding to n = 1 and 2
in (6.17) are clearly observed at 8.6 and 4.3 kHz, respectively, while the trap frequency
of the 1S0 state in this condition is 3.9 kHz. Note that to confirm the resonance observed
at 8.6 kHz corresponds to n = 1 in (6.17), we took data up to 20 kHz (> 2×8.6 kHz). If
it is n = 2, the other peak should appear around 17.2 kHz.

The resonance frequency is determined by fitting a Lorentzian function to the width
of atomic clouds. Since all the magnetic sublevels of the 3P2 state are populated in this
measurement and in fact we experimentally confirmed that the atoms in every sublevel
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are trapped, their trap frequencies can be thought to coincide with each other within
the resolution of this measurement. This result is consistent with the measurement of
polarizabilities of magnetic sublevels of the 3P2 state using the ultranarrow 1S0↔3P2

transition in our different work, which indicates that the difference of the trap frequency
between magnetic sublevels in this measurement is less than 1 kHz. Thus, in the following
discussion, we consider that the trap depth of all magnetic sublevels of the 3P2 state are
same. With this information about the trap, we can also estimate a number density.

6.1.6 High density ultracold metastable atoms

Now we know the trap depth of our FORT. Thus, what we should aim next is a BEC in
the metastable state.

We prepared ultracold and dense ground state Yb[1S0] atoms in a crossed FORT at a
density of 2×1014 cm−1 and at a temperature of less than 0.7 µK. During excitation from
the ground state to the 3P2 state through the intermediate 3D2 state, the atoms suffer from
heating due to the spontaneous decay of the 3D2→3P1→1S0 transitions. Nevertheless, we
have successfully prepared Yb[3P2] atoms in density n = 2× 1013cm−3, temperature T =
1.8 µK and PSD = 0.01. This is the highest density and lowest temperature ever achieved
for the 3P2 atoms.

In principle, PSD could be increased by performing further evaporative cooling of the
Yb[3P2] atoms. We, however, found that it was not possible due to a large trap loss. As
discussed in the next section, there is a large inelastic collisional process between Yb[3P2]
atoms in a FORT which we identify as fine-structure changing collisions.

Cross dimensional relaxation measurement

Before proceeding to the next section, I discuss the elastic collision rate of Yb[3P2] atoms
at this ultracold temperature (2 µK).

In general, since the trap loss is caused both by elastic and inelastic processes, it
is difficult to separately measure one of them. Monroe et al. developed a technique to
independently measure the elastic binary collision rate, which is called cross-dimensional
relaxation measurement [72]. The basic idea is the following: First, we prepare atoms
whose axial temperature is different from the radial one in a trap by some way. Then, we
measure the thermalization time τ due to the elastic collisions between two dimensions in a
trap. According to the Monte Carlo simulation, atoms collide 2.7 times to be thermalized
[72], that is to say,

n̄βelτ = 2.7, (6.19)

where n̄ is the average density. βel = σelv̄ is the elastic collision rate constant, where σel

is the elastic collision cross section and v̄ = 4
√

(kBT )/(πm) is the mean relative velocity.
Thus measuring the average density and the thermalization time, we can independently
estimate the elastic collision rate βel.

We first prepared atoms in the crossed FORT which were well thermalized and then
heated the atomic cloud along the x direction by using the excitation of atoms to the 3P2

state. We measured Tx and Ty as a function of holding time after the excitation. In Fig.
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Figure 6.14: Cross dimensional relaxation measurement. Atoms are first heated to x
direction by the excitation laser. We could not observe any difference between Tx and
Ty 2 ms after the excitation (2 ms), which indicates that the system reaches thermal
equilibrium within 4 ms at this ultracold temperature and high density.

6.14, Tx and Ty are shown as a function of time t after the excitation. Even 2 ms after
the excitation of 2 ms, no significant difference between Tx and Ty was observed. Then we
conclude that the system reaches the thermal equilibrium within 4 ms and thus the lower
limit of the elastic collision rate is estimated to be 9×10−12 cm3s−1 at the temperature of 2
µK. Assuming that the σel does not depend on T in the range of the present measurement,
this result is consistent with the estimation discussed in the following section. Note that
the relaxation due to the anharmonicity of the trap is measured not to be less than 50
ms in our different work [26].
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6.2 Collisional properties between metastable atoms

As discussed in the previous section, further evaporative cooling of Yb[3P2] atoms in a
FORT to reach a BEC turned out to be difficult because the trap loss is too large. Since
atoms in all magnetic sublevels can be trapped in a FORT and then the trap loss due to
multichannel collisions is suppressed, this indicates that there is another large inelastic
loss process. In this section, details of the trap loss mechanism are discussed.

6.2.1 Two body collisions
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Figure 6.15: Measurement of the trap loss of 3P2 atoms in a FORT. Non-exponential
decay is caused by the trap loss due to two-body collisions. Constant temperature during
this measurement indicates that the system reaches thermal equilibrium.

We measured the trap loss of the Yb[3P2] atoms from a single FORT. In Fig. 6.15, the
number of the Yb[3P2] atoms in a FORT are plotted as a function of time after loading
of atoms in every magnetic sublevels of the 3P2 state. Note that the (presumably state
independent) one-body trap loss lifetime due to background gas collisions is measured to
be 15 s (Fig. 2.5) which is much longer than the observed trap lifetime. A significant
feature is the non-exponential decay of atom number along the constant temperature of
41 µK. Our model for the trap loss which includes a combination of one-body loss and
two-body loss is

dN

dt
= −ΓN − β′N2, (6.20)
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where N is the number of atoms, Γ is the one-body loss rate and β′ is the measured
two-body atom loss rate. The solid line in Fig. 6.15 is a fit of (6.20) to the trap loss data.
β′ is related to the density related (volume independent) two-body loss rate coefficient β
by β = β′Veff , where Veff is the effective volume of atoms given in the following discussion.

Effective volume

Here we consider the effective volume of atomic cloud in a FORT. Since a FORT potential
is obtained by a focused Gaussian beam, the potential U(r, z) is given by,

U(r, z) = −|U0| w2
0

w2(z)
exp

[
− 2r2

w2(x)

]
, (6.21)

where r and z are radial and axial coordinates and U0 is the trap depth. Also,

w(z) = w2
0

√
1 +

(
z

zR

)2

, zR =
πw2

0

λ
, (6.22)

where w0 is a beam waist, zR is a Rayleigh length, and λ is the laser wavelength. Let the
radius of the atomic cloud be ρ(z). Then by considering the balance between the trap
potential and the thermal energy of an atomic cloud, we have

−|U0| w2
0

w2(z)
exp

[
−2ρ(z)2

w2(x)

]
= −|U0|+ kBT. (6.23)

Thus, using the parameter η (= U0/(kBT )) which is the ratio of the trap depth U0 to the
temperature T (kB the Boltzmann constant), ρ2(z) is given by

ρ2(z) = −w2(z)

2
ln

[
w2(z)

w2
0

(
1− 1

η

)]
. (6.24)

Atoms can be trapped within the region in which ρ2(z) > 0 is satisfied. Thus the edge of
the atomic cloud along the axial direction zmax is given by

zmax = zR

√
1

η − 1
. (6.25)

Since the volume of the atomic cloud can be well approximated by a cylinder with the
size of the FORT beam,

Veff = πρ2(0)(2zmax) = πω2
0zR ln

(
η

η − 1

) √
1

η − 1
. (6.26)

From the measured trap frequency, the trap depth is found to be U0/kB =193 µK for all
magnetic sublevels. Since atomic temperature is 41 µK, we can determine η = 4.7. From
the FORT parameters w0=15 µm and zR= 1.3 mm, we can determined the density related
two-body loss rate β = 1.3(4)×10−11 cm3/sec. Note that β consists of both inelastic βin

and elastic βel collision rates. By using a theoretical model for evaporative cooling, we
will next separately estimated βin and βel.
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6.2.2 Elastic and inelastic collision rates under thermal equilib-
rium conditions

Elastic collisions
(evaporative Cooling)

Inelastic collisions
(Heating)

Figure 6.16: Loss of atoms in a trap is caused by the elastic and inelastic collisions.
While elastic collisions lead to cooling of atoms (evaporative cooling), inelastic ones lead
to heating. Finally, both effects equilibrate and system reaches the thermal equilibrium.

In addition to the non-exponential trap decay, the other important feature in Fig. 6.15
is the constant atomic temperature throughout the 120 ms holding time at T = 41 µK. In
general, the trap loss due to two body collisions can be classified by elastic and inelastic
processes. The elastic collisions lead to evaporative cooling and inelastic collisions lead
to heating since not only hot atoms but also cold atoms can be escaped from the trap via
inelastic collisions (Fig. 6.16). The observed constant temperature along with the large
trap loss of atoms indicates that the system reaches thermal equilibrium. In other words,
the cooling effect due to the elastic collisions equilibrates with the heating effect due to
the inelastic collisions. Under the thermal equilibrium condition, the relation between the
observed two-body decay rate β and the elastic βel and inelastic βin collision rate can be
separately described. This model was first developed by deCarvalho and Doyle [73] and
is briefly summarized here.

First, we assume that the density distribution is given by

n(r) = n0 exp

[
−U(r)

kBT

]
, (6.27)

where n0 is the peak density. This description is valid in case of the infinitely deep trap.
If the trap depth is finite, (6.27) is still valid when η > 4 [73] which is satisfied in our
case. This approximation is called “large-η approximation”.
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We next introduce the collisional effective volume. When a single inelastic scattering
leads to loss of one atom in a trap, the inelastic collision rate Ṅin is given by

Ṅin = −(n0v̄relσin)(Λeffn0) (6.28)

where Λeff is the collisional effective volume, v̄rel = 4
√

(kBT )/(πm) is the mean relative
velocity between atoms, σin is the inelastic scattering cross section. On the other hand,
under thermal equilibrium conditions,

Ṅ = V ′
eff ṅ0, (6.29)

where V ′
eff is the effective volume defined by N = n0V

′
eff . By substituting (6.29) into

(6.28), we have

(ṅ0)in = −
(

Γeff

V ′
eff

v̄relσin

)
n2

0

= −βinn
2
0 (6.30)

Similarly, by using f the probability of elastic collisions which result in trap loss of one
atom,

ṅ0 = (ṅ0)in + (ṅ0)el

= −(βin + fβel)n
2
0

= −βn2
0 (6.31)

Using the ratio of elastic to inelastic scattering rate γ ≡ σel/σin,

βin =
1

fγ + 1
β, βel =

γ

fγ + 1
β. (6.32)

One of the significant conclusions in [73] is that f and γ in (6.32) depends only on η under
thermal equilibrium conditions. We next calculate f and γ.

We assume that the trap is a linear elliptical shape whose long and short axes corre-
spond to axial and radial direction of the FORT potential, respectively. Then the potential
is given by

U(r, z) = U0

√(
z

Rz

)2

+

(
r

Rr

)2

,

(
z

Rz

)2

+

(
r

Rr

)2

≤ 1, (6.33)

where Rz and Rr denote the axial and radial length of the trap, respectively. However,
by using z

Rz
= ρz and r

Rr
= ρr and using the polar coordinate instead of the cylindrical

coordinate, the potential (6.33) is equivalent to U(r) = U0r (0 ≤ r ≤ 1). We, then, can
apply the discussion in [73] to our system.

The total energy of atoms E in the trap is given by

E = NEave, (6.34)
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where N is the number of atoms in a trap and Eave is the average energy of an atom in a
trap. By differentiating (6.34) by t under thermal equilibrium conditions,

Eave =
Ė

Ṅ
=

ṄevaEeva + ṄineEine

Ṅeva + Ṅine

=
fγEeva + Eine

fγ + 1
, (6.35)

where Ėave = 0 due to thermal equilibrium conditions and Ṅeva/Ṅine = fγ. From (6.35),
γ is written as

γ =
Eine − Eave

f(Eave − Eeva)
. (6.36)

Under the large-η approximation, f , Eave, Eeva and Eine are described by only η as given
in [73] and shown in Fig. 6.17 for η > 4. For η = 4.7 in this experiment, f = 0.099 and
γ = 2.2. As a result, the elastic and inelastic collision rate constant is given by

βel = 2.3(6)× 10−11 cm3s−1

βin = 1.0(3)× 10−11 cm3s−1 (6.37)

for the temperature of 41 µK.
This inelastic collision rate constant is enormously large. Since the trap loss due to

multichannel collisions was suppressed in a FORT, the trap loss observed in this measure-
ment must be due to a different physical mechanism which we interpret as fine-structure
changing collisions in this ultracold temperature regime.
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6.2.3 Fine structure changing collisions
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Figure 6.18: Fine structure changing collisions. If the potential curve of 3P2 −3 P2 pairs
intersect with that of 3P2−3 P1 or 3P2−3 P0 at some point, one of the colliding 3P2 atoms
can transit to other state of the fine structure (3P1 or 3P0). In such case, the atom obtains
the energy difference as its kinetic energy.

In Fig. 6.18, the mechanism of fine structure changing collisions are schematically
shown. If the potential curve of the 3P2 −3 P2 pairs intersect with that of the 3P2 −3 P1

or 3P2 −3 P0 curves at some point, one of the colliding 3P2 atoms can transit to other
state of the fine structure (3P1 or 3P0) via collisions. In such a case, the atom obtains the
energy difference as its kinetic energy. The energy difference between fine structure levels
is much larger than the trap depth, such atoms immediately escape from the trap.

In our setup, atoms in every magnetic sublevel can be trapped in a FORT. Hence, the
trap loss due to the multichannel collisions in the 3P2 state which were essential obstacles
in a magnetic trap is expected to be suppressed. Thus the existence of fine-structure
changing collisions is strongly suggested. The previous theoretical works revealed details
of fine-structure changing transitions in collisions of Mg[3Pj], O[3Pj], Sc[2Dj], and Ti[3Fj]
atoms with closed-shell atoms at a high temperature. However, there has not been no
theoretical work on the fine-structure changing collisions between atoms in the 3P2 state
at ultralow temperature achieved in the present work. While the recent experiment of
magnetically trapped Ca atoms studied multichannel collisions between 3P2 atoms and
discussed the possibility of the fine-structure changing process [2], we believe that our
work is the first definite experimental measurement of this process between 3P2 atoms.
For the further understanding of the observed large inelastic collision rate and possibilities
of the fine structure changing collisions, a quantitative theory on collisional properties of
3P2 atoms is highly desirable.



6.3. EFFECT OF THE BLACK BODY RADIATION 91

6.3 Effect of the black body radiation

For Strontium atoms in the metastable 3P2 state, scattering rate of photons from the
black-body radiation (BBR) at room temperature is large [17]. We investigate the effect
of black body radiation on the metastable Yb atoms. This calculation was first done by
Mizoguchi [74] in our group. The BBR effect is an important information in this study.
Thus it is again briefly introduced here.

The stimulated transition rate Rst by BBR is given by

Rst = Bρ(ω), (6.38)

where B is the Einstein B coefficient and ρ(ω) is the density of the photon energy of the
blackbody which is well known the Planck formula,

ρ(ω) =
~ω3

π2c3

1

e
~ω

kBT − 1
. (6.39)

On the other hand, the B coefficient is related to the A coefficient (spontaneous emission)
by

B =
π2c3

~ω3
A. (6.40)

According to these three equations, we have

Rst =
A

e
~ω

kBT − 1
. (6.41)

To calculate the spontaneous emission rate A, let us consider the Fermi’s golden rule
which gives the (spontaneous and stimulated) emission rate

Wem =
2π

~2
|〈b|H+

int|a〉|2δ(ωba − ωk), (6.42)

where |a〉 and |b〉 are the initial and final state. In the real system, some modes dω are
included in a range of frequencies dωk. Considering the number of modes per unit energy
interval in a large cubic V ,

dN =
V

(2π)3
k2dkdΩk, (6.43)

where dΩk = sin θkdθkdφk. From the (6.42),

dWem =
2π

~2
|〈b|Hint|a〉|2 dN

dωk

=
V ω2

(2π)2c3~2
|〈b|Hint|a〉|2dΩk. (6.44)

We consider only E1 and M1 transitions. By integrating the matrix element of E1 and
M1 transitions given in section 4.2, we can find

∫
|〈b|H+R |a〉E1andM1|2dΩk = (n + 1)

~ω
2V ε0

8

3
π|〈b|M|a〉|2, (6.45)
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where M denotes er and µL for E1 and M1 transitions, respectively. Since the term 1
within (n + 1) corresponds to the spontaneous emission (the other corresponds to stimu-
lated emission), integrating (6.44) and using (6.45) lead to

A =

(
Jb 1 2
−Mb q M ′

a

)2
ω3

3πε0~c3
|〈b||M||a〉|2. (6.46)

Here we separate the dependence of the magnetic sublevels which is included in a Wigner-
3j symbol. Finally, from (6.41) and (6.46), the photon scattering rate in BBR which does
not include the information about the magnetic sublevels is

Rst =
1

e
~ω

kBT − 1

ω3

3πε0~c3
|〈b||M||a〉|2. (6.47)

In Fig. 6.19, scattering rates of the (6s6p)3P2→(6s6p)3P1(M1), (5d6s)3Dx(x=1,2,3)
(E1), (6s7s)3S1(E1) and (5d6s)1D2(E1) transitions are shown. We used theoretical values
of reduced matrix elements given in [60]. Note that Fig. 6.19 does not include the
information about the magnetic sublevels. If one wants to see it, one just has to multiply
the square of a Wigner-3j symbol which is always less than 1. As you can see in Fig. 6.19,
the photon scattering rate of the (6s6p)3P2 state in BBR at room temperature is less
than 10−4 Hz (10000 s) which is much longer than the lifetime 15 s. As a result, we can
conclude that the effect of the BBR radiation can be negligible in case of the metastable
Yb[3P2].

(6s6p) 3P1

(5d6s) 3D3
(5d6s) 3D2

(5d6s) 3D1

(5d6s) 1D2

(6s7s) 3S1

Figure 6.19: Photon scattering rate of the 3P2 state in the BBR radiation field. Scattering
rates from the 3P2 state are shown as a function of temperature. At room temperature
(300 K), BBR effects in the 3P2 state are negligibly small ( < 10−4 Hz).
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6.4 Optical trapping of Yb atoms in the 3P0 state
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Figure 6.20: Trapping of Yb[3P0] atoms in a FORT. (Top) By irradiating the 770-nm
laser in addition to 404-nm excitation laser during the excitation, the 3P0 state becomes a
dark state. To suppress the trap loss by excitation lasers, tight confinement in 1D optical
lattice potentials was used. (Bottom) Absorption image of trapped Yb[3P0] atoms in a
FORT.

We report optical trapping of Yb[3P0] atoms in a FORT at 532 nm. Recently, the
3P0 state in two-electron atoms attract interests from the viewpoint of novel frequency
standards and atomic clocks using the 1S0↔3P0 “clock” transition. A collision shift is
one of the main issues toward such applications. It is, then, important to investigate
the collisional property between Yb[3P0] atoms. In this study, we have successfully trap
Yb[3P0] atoms in a FORT and measured trap frequency by the parametric resonance
technique.

Figure 6.20 shows experimental procedures. By irradiating the 770-nm laser (3P2↔3S1)
in addition to the 404-nm laser, the 3P0 state becomes a dark state. However, excitation
cycles for atoms to be transferred to the 3P0 state lead to heating and trap loss of atoms
in a trap. To overcome this problem, we made use of the tight confinement of the (1D)
optical lattice potentials during the excitation and successfully trap atoms in the 3P0 state
in a FORT (see Fig. 6.20).

In addition, we measured the trap frequency by the parametric resonance technique.
Observed resonances are shown in Fig. 6.21. Although the number of atoms is small,
we could observe resonance signals and confirm the dependence on a FORT power. The
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estimated trap potentials are 130 µK for parameters P = 6 W, w0 = 15 µm and λ = 532
nm.
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Figure 6.21: Measurement of the trap frequencies of Yb[3P0] atoms in a FORT by the
parametric resonance technique. Shift of the resonance signal for two different FORT
power (Top: 6.4 W, Bottom: 1.6 W) was observed.
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Chapter 7

Observation and application of the
ultranarrow 1S0 −3 P2 transition

We have successfully observed the ultranarrow magnetic quadrupole 1S0 ↔ 3P2 transition
in Yb bosonic (174Yb) and fermionic (171Yb, 173Yb) isotopes using the developed laser
system at 507 nm in Chapter 3.

Due to its ultranarrow linewidth, this transition had never been observed before this
study. In this chapter, we first describe the experiment to estimate the resonance fre-
quency using an optical frequency comb. Using this transition, high-resolution spec-
troscopy of ultracold atoms and a BEC has been demonstrated. We have selectively
excited atoms to all of the magnetic sublevels of the 3P2 state. Also, polarizabilities of all
magnetic sublevels of the 3P2 state were precisely measured. We also demonstrated the
magnetic resonance imaging (MRI) experiment in which atoms in a trap were addressed
by using a magnetic field gradient. Details about the spectroscopy of a BEC will be pre-
sented in the next Chapter. Basic properties of the 1S0↔3P2 transition are summarized
in Table 7.1 and 7.2.

Table 7.1: Magnetic moment of the (6s6p)3P2 state in isotopes. F is the total angular
momentum and µB is a Bohr magneton.

Bosons 171Yb 173Yb

F 2 3/2 5/2 1/2 3/2 5/2 7/2 9/2

µ/µB 3 2.7 3 −1 0.3 1.3 2.2 3
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Table 7.2: Important parameters of the magnetic quadrupole 1S0↔3P2 transition in Yb
[60, 75].

1S0↔3P2

Boson Fermion Unit

Wavelength λ 507.35 nm

Lifetime τ 15 6.3 (171Yb) s

7.2 (173Yb) s

Natural linewidth
Γ

2π
=

1

2πτ
10.6 25 (171Yb) mHz

22 (173Yb) mHz

Saturation intensity Isat =
πhc

3λ3τ
1.1 2.5 (171Yb) ×10−8mW/cm2

2.2 (173Yb) ×10−8mW/cm2

Recoil frequency 4.4 kHz

Doppler broadening (FWHM) δνFWHM
D 32.0×

√
T [µK] kHz
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7.1 Estimation of the resonance frequency

Since no one had ever observed the 1S0↔3P2 transition before our experiment, we did
not know the resonance frequency. It is rather difficult to find an ultranarrow resonance
without any information about its resonance frequency. Thus we first roughly estimated
the resonance frequency fest of the 1S0 ↔ 3P2 transition (507 nm).

7.1.1 Basic idea

1S0

3P2

507nm

3S1

770nm649nm

3P0

578nm

fest= f0+ f1- f2fest= f0+ f1- f2

�����������	���
��
�������
�����������	���
��
�������

����	����������	��������

����� !"�
����	����������	��������

����� !"�

fest

f2f1

f0

Figure 7.1: The desired resonance frequency fest can be estimated from three known
frequencies. f0 was measured in [34] and f1 and f2 were measured in this work.

As shown in Fig. 7.1, combining three resonances of f0(
1S0 ↔ 3P0, 578 nm), f1(

3P0

↔ 3S1, 649 nm), and f2(
3P2 ↔ 3S1, 770 nm), we can calculate fest by

fest = f0 + f1 − f2. (7.1)

The absolute frequency f0 of the so-called “clock” transition (1S0↔3P0) in fermion isotopes
171Yb and 173Yb was measured by the NIST group [34]. In order to calculate the desired
frequency fest, we then measured frequencies of the f1(

3P0 ↔ 3S1, E1, 649 nm) and f2(
3P2

↔ 3S1, E1, 770 nm) transitions for fermionic isotopes by an optical frequency comb.
For bosonic isotopes, although the absolute frequency of the clock transition f0 had

not been presented anywhere at the moment, we can estimate fest by using a fact that the
isotope shift of all 3P states are similar to each other in Yb. To see this, let us consider
the isotope shift between 174Yb (boson) and 171Yb (fermion) as an example (Fig. 7.3). As
shown in Fig. 7.2, isotope shifts of the 3Px↔3S1 (x=0,1,2) transitions are almost same
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with each other within a several hundred MHz. By considering the isotope shift of the
3P2↔3S1 and 3P1↔3S1 transitions between 171Yb and 174Yb shown in Fig. 7.3, we can
derive following relations.

∆4 + ∆3 ' ∆4 + ∆2

∴ ∆3 ' ∆2, (7.2)

where ∆2, ∆3, and ∆4 are isotope shifts of the 3P1,
3P2 and 3S1 states, respectively. The

resonance frequency of the 1S0↔3P2 transition in boson isotopes (174Yb in this example)
can be estimated by

171fest −174 fest = ∆1 + ∆3

' ∆1 + ∆2 (∵ (7.2))

= 171f3 −174 f3

∴ 174fest =171 fest − (171f3 −174 f3). (7.3)

where 171f3−174f3, the isotope shift of the 1S0↔3P1 transition between 171Yb and 174Yb
was already measured in [42].
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Figure 7.2: (Top) Isotope shifts of the 3Px↔3S1 (x=0,1,2) transitions in Yb are almost
same with each other within several tens of megahertz [76, 77, 78]. This characteristic
may be common in two-electron atoms. (Bottom) For example, isotope shifts in Mg atoms
coincide with each other within a several megahertz [79].
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174Yb
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Figure 7.3: Similar isotope shifts (∆2 ' ∆3) between 3Px (x=0,1,2) states enable us
to estimate the resonance frequency 174fest(unknown) from 171fest(known) and already
measured isotope shifts 171f3 −174 f3 of the 1S0↔3P1 transition by 174fest = 171fest −
(171f3 −174 f3).
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7.1.2 Frequency measurement of the 3P2 −3 S1 (770 nm) and
3P0−3S1 (649 nm) transitions by an optical frequency comb

Since both the 3P2−3 S1 (770 nm) and 3P0−3 S1 (649 nm) transitions are strong electric-
dipole (E1) transition with natural linewidth of 12 MHz, spectroscopy of these transitions
are relatively easy. To this end, we have to first make population in the metastable 3P0

and 3P2 states. We use an opto-galvano cell (Hamamatsu Photonics, L2783) where Yb
atoms are emitted by an electric discharge in Neon buffer gas of about 10 Torr. Because
the electric discharge is a rather violent process, some Yb atoms are populated in the 3P2

and 3P0 state in the interaction region.
We performed saturation spectroscopy of metastable atoms as schematically shown

in Fig. 7.4. The pump laser was chopped (3 kHz) by a mechanical chopper to get rid
of the background level and the signal was obtained by a lock-in amplifier. Resonance
frequency was measured by an optical frequency comb (FC8003, Menlo Systems GmbH).
The frequency comb is generated by a femtosecond Ti:sapphire laser (Gigajet 20, Gi-
gaOptics GmbH) with a repetition rate of 824 MHz. Femtosecond pulses are injected
into a highly nonlinear photonic crystal fiber which expands the comb range to an octave
spanning. Then, the carrier-envelope offset frequency is derived from a beat frequency
in the self-referenced interferometer. Both the repetition rate and the carrier-envelope
offset frequency are locked to the commercially available Rb frequency standard (PRS10,
Stanford Research Systems). Laser frequency is measured as an RF beat signal between
the measured laser and the nearest frequency comb. Details about the frequency comb
will be presented in Chapter 9.

Because the accuracy of the measurement of tens of megahertz was good enough for
the present purpose, we measured frequency of the beat signal not by a frequency counter
but by a spectrum analyzer. We tuned the laser frequency at the top of resonance signals
obtained in saturation spectroscopy, left it there and measured the frequency of the RF
beat signal.

Observed spectra are shown in Fig.7.5 (3P0−3 S1, 649 nm) and Fig.7.6 (3P2−3 S1, 770
nm). All resonance signals were identified by reference to the isotope shift and hyperfine
splitting previously measured in [77, 78]. Solid lines in Fig.7.5 and 7.6 are fits to data by
summation of corresponding Lorentzian functions, which well agree with observed spectra.

For fermions (171Yb and 173Yb), hyperfine splittings can be described by [80]

ν = ν0 + A
K

2
+ B

3K(K + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
(7.4)

where ν is the resonance frequency, ν0 is the unperturbed frequency (resonance frequency
when hyperfine interaction doesn’t exist), A and B are hyperfine constants, J is the electric
angular moment, I is the nuclear spin , F = I +J and K = F (F +1)−I(I +1)−J(J +1).
Hyperfine constants A, B and ν0 relative to that in 174Yb are shown in the bottom of Fig.
7.5 and 7.6 for the relevant transitions.
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Figure 7.4: Saturation spectroscopy. A pump beam was chopped (3 kHz) for the purpose
of removing the background and the resonance signal was obtained by the lock-in amplifier.
After tuning the laser frequency at the top of the resonance, the laser frequency was
measured by an optical frequency comb.
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Figure 7.5: Spectra of the 3P0↔3S1 transition (649 nm) obtained by the saturation spec-
troscopy using discharged Yb atoms. The solid line is a fit to data by a summation of
Lorentzian functions whose peak positions are identified by the results of the frequency
measurement and previously measured isotope shifts shown below [77, 78]. Dotted line in
the level diagram indicates “center” frequency listed in the table by the side.
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Figure 7.6: Spectra of the 3P0↔3S1 transition (770 nm) [78].
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7.1.3 Results

Results of the estimation are shown in Fig. 7.7. The resonance frequency of the 1S0↔3P0

transition in bosonic isotopes and f1 in 170Yb could not be measured in this experiment.
Then they were derived by assuming same isotope shifts with that of the 1S0↔3P1 tran-
sition.

Major problem of this estimation is the large pressure shift due to buffer gas (Neon)
in an opto-galvano cell. Pressure broadening and shift of the 3P0↔3S1 transition was
measured in [81](3P0↔3S1 (649 nm) in Neon: 2.5(±0.3)×10−9s−1cm3 (broadening) and
−0.5(±0.1)×10−9s−1cm3 (shift))1. However, experiment for the 3P2↔3S1 transition has
not been reported. We assumed same values for the 3P2↔3S1 transition. This may lead
to a large error in this estimation. We, however, regarded that the resonance frequency
must be located within a hundred megahertz around these estimated values. In fact, we
have successfully found the resonance.
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Figure 7.7: Estimation of the resonance frequency of the 1S0↔3P2 transition. f0 for 171Yb
and 173Yb were measured in [34].

1These value was measured to the buffer gas number density.
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7.2 Observation of the ultranarrow 1S0−3P2 transition

Based on the information of the resonance frequency estimated in the previous section, we
found the resonances. The 1S0↔3P2 transition is the M2 transition. The Rabi frequency
Ω can be described by [82]

Ω [kHz] = 2π ×




0.204
√

I [W/cm2]

2.280
√

I [W/cm2]

, (7.5)

where I is the intensity of the excitation laser. In this experiment, the maximum intensity
of the excitation laser at atoms is 40 W/cm2. If we make use of the theoretical transition
strength given in [60, 75], (7.5) indicates the Rabi frequencies ∼ 2π× 1 kHz for bosonic
isotopes and ∼ 2π× 10 kHz for fermionic isotopes.

We first used fermionic isotope 173Yb in a compressed MOT to find the resonance
due to its relatively large transition strength caused by the hyperfine mixing effect [75]
which is further described in the following discussion. In addition, we artificially broaden
the spectrum [83, 34] to find the resonance as easy as possible. First, we used relatively
“hot” (several hundred microkelvin) atoms in order to utilize a Doppler broadening. For
example, 230 kHz can be expected for 50 µK. Second, we rapidly switched on and off the
MOT laser during the excitation in order to utilize a broadening due to the ac Stark effect
induced by the MOT laser. Third, the broadening due to the Zeeman effect induced by
the MOT magnetic field gradient (∼ 14 G/cm) was also used. With the help of these,
we have succeeded in observing the resonances. Fig. 7.8 shows the number of atoms in
the MOT until we found the resonance. The MOT loading time was reduced to 1 ∼ 3 s
to search the resonance as fast as possible. Frequency of the excitation laser was scanned
at 200 kHz (507 nm) intervals and irradiated to atoms for 300 ms. The resonance can
be detected as the decrease of the number of atoms in a MOT. This is because the MOT
does not work for metastable 3P2 atoms and the lifetime of the metastable 3P2 state is 15
s which is long enough for atoms to fall from the MOT region by gravity. In this study,
the transitions we found are the 1S0 (F=5/2) ↔ 3P2 (F=5/2) transition in 173Yb, the
1S0 (F=1/2) ↔ 3P2 (F=5/2) transition in 171Yb, and 1S0 ↔ 3P2 transition in 174Yb.

7.2.1 Fermions: 173Yb [1S0(F=5/2) ↔ 3P2(F=5/2)]
and 171Yb [1S0(F=1/2) ↔ 3P2(F=5/2)]

Hyperfine mixing effect - induced E1 transition

The linewidth of the 1S0↔3P2 transition in Yb fermionic isotopes is expected to be slightly
broader than that of bosonic isotopes due to the hyperfine mixing (HFM) effect. The
HFM effect is caused by the interaction HHFI between a nuclear spin I and a total electric
angular momentum J . Regarding HHFI as a first order perturbation, the mixed 3P ′

2 state
is described as ∣∣3P ′

2, F, mF

〉
=

∑
α

〈3P2, F, mF |HHFM|α〉
E(α)− E(3P2)

|α〉 , (7.6)
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Figure 7.8: Road to the resonance. The number of atoms in the MOT is plotted as a
function of time. Frequency of the excitation laser was scanned at 200 kHz (507 nm)
intervals. After 4.2 hours, the number decreases because we made the MOT loading time
shorter in order to accelerate the sequence. Finally, seven hours later, early in the morning
(at 3:50 am on Sunday, March 4th, 2007), we found the resonance.

where α is all possible states. The matrix element of the E1 transition between the mixed
3P ′

2 state and the 1S0 ground state is

〈3P ′
2, F,mF |r(1)

q |1S0, F
′,mF ′〉 =

∑
α

〈3P2, F, mF |HHFI|α〉
E(α)− E(3P2)

〈α|r(1)
q |1S0, F

′,mF ′〉. (7.7)

Since α includes some states which are connected to the ground state via the E1 transition
(e.g. (6s6p)3P1), this matrix element does not vanish in some cases. This means that, if
atoms have a nuclear spin, the 1S0↔3P2 transition can occur through the E1 transition
in addition to the M2 transition.

As for Yb atoms, fermionic isotopes 173Yb and 171Yb have nuclear spin 5/2 and 1/2,
respectively, but all bosonic isotopes do not have a nuclear spin (see Table 2.1). As a result,
we can expect the HFM effect only for fermionic isotopes. Note that the selection rules
of the E1 transition induced by the hyperfine mixing is same as that of the E1 transition.
For example, the 1S0(F=5/2)↔3P2(F=5/2) transition via HFM-E1 is allowed, but the
1S0(F=5/2)↔3P2(F=1/2) transition is not since ∆F =2 > 1 which is not allowed in the
E1 transition (see Fig. 7.9).

To exploit the spectral broadening induced by the HFM effect in fermionic isotopes2,
we chose the 1S0(F=5/2)↔3P2(F=5/2) transition in 173Yb as a first target. Fig. 7.10
shows the observed spectrum whose spectral width is broadened to ∼ 1 MHz due to several
effects mentioned above. Using this transition, we next carried out the spectroscopy
of ultracold fermionic isotopes which were cooled by evaporative cooling. The residual
magnetic field split the 3P2(F=5/2) state split into six Zeeman sublevels, one of which

2In order to find other two resonances(1S0(F=5/2)↔3P2(F=3/2), 1S0(F=5/2)↔3P2(F=7/2)), we
had to use two AOMs to compensate the frequency interval between the atomic resonance and the ULE
resonance. The 1S0(F=5/2)↔3P2(F = 5/2) required only one AOM, which was technically much easier
than others.
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is shown in Fig. 7.11. The Zeeman splitting of the ground state 1S0(F=1/2) is about
three orders of magnitude less than that of the 3P2 state because the nuclear spin is much
smaller than the electric spin. Then the Zeeman splittings of the 3P2 state were observed.

After finding the resonance in 173Yb, we could find the resonance in the other fermionic
isotope 171Yb with relative ease. The reason is that the frequency interval (isotope shift)
between them can be estimated with the accuracy of ∼1 MHz by using Eq. (7.3) and the
information in [34], Fig. 7.5 and Fig. 7.6. We tried to find the 1S0(F=1/2)↔3P2(F=5/2)
transition in which the HFM effect does not contribute (see Fig.7.9). The observed spec-
trum is shown in Fig. 7.11.

F=3/2

F=5/2

����������

1S0 F=1/2

F=9/2

F=7/2

F=5/2
F=3/2

F=1/2

1S0,  F=5/2

171Yb 173Yb

3P2

3P2

	
���
���
��������������
�������������

���

Figure 7.9: Hyperfine mixing can occur between levels which satisfy the selection rule of
the E1 transition. Possible transitions via the HFM-E1 transition are described by thick
lines. Other transitions are possible only through the M2 transition.
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Figure 7.10: The first spectrum of the 1S0(F=5/2) ↔ 3P2(F=5/2) transition in fermion
isotope 173Yb. The spectral width was artificially broadened in this measurement.
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171Yb 1S0 (F=1/2)       3P2 (F=5/2)

Figure 7.11: (Left): Spectrum in ultracold 173Yb. The residual magnetic field split the
3P2(F=5/2) state into six Zeeman sublevels. One of them is shown here. (Right): The
1S0(F=1/2)↔3P2(F=5/2) resonance in 171Yb. The HFM effect does not work in this
transition.
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7.2.2 Boson: 174Yb

Finding the 1S0↔3P2 transition in bosonic isotopes is crucially important. First, it en-
ables the coherent excitation of a BEC in the ground state to the metastable 3P2 state.
Furthermore, we have the ultranarrow magnetic-insensitive 1S0(m=0)↔3P2(m=0) tran-
sition in bosonic isotopes. This kind of transition is well known as a “clock” transition.
In fact, an atomic clock using this transition has been proposed in [3].

Since our group has realized a BEC of 174Yb in the previous work [24], we searched the
resonance in 174Yb among five stable bosonic isotopes of Yb. By irradiating the excitation
laser to atoms in a compressed MOT for 3 s, we have successfully found the resonance
which is shown in Fig.7.12. In the following sections and chapters, experiments using the
1S0↔3P2 transition in 174Yb will be presented in detail.
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174Yb 1S0�3P2

Figure 7.12: The 1S0↔3P2 transition in 174Yb. Atoms in a compressed MOT were used.
Spectrum was artificially broadened to make it easier for us to find the resonance, which
results in ∼1 MHz spectral width.
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7.3 Selective excitation to all magnetic sublevels of

the 3P2 state in 174Yb

The 3P2 state in a bosonic isotope 174Yb has five magnetic sublevels corresponding to m
= 0, ±1 and ±2. If we consider the high-resolution spectroscopy using this transition,
the selective excitation of atoms to the arbitrary magnetic sublevel of the 3P2 state is
inevitable. For example, in order to measure the absolute frequency of the clock transition,
we need to observe well separated 1S0↔3P2(m=0) transition. When we measure the
polarizability of each magnetic states, each magnetic sublevels must be well distinguished.
Hence we have demonstrated the selective excitation of atoms to any magnetic sublevels.

The experimental procedure and configuration of lasers and the magnetic field are
shown in Fig. 7.13. Atoms are cooled by evaporative cooling in a crossed FORT and
excited in the FORT. Atomic temperature is about 1 µK. As an external magnetic field,
we used the residual magnetic field at the crossed FORT region.

Fig. 7.14 shows the obtained spectra. Fig. 7.14(a) is the spectrum obtained by roughly
scanning the frequency of the excitation laser, in which five components are included with
the interval of∼1.5 MHz corresponding to the residual magnetic field of 0.7 G. The relative
signal strength of each components depends on the selection rule of the M2 transition. As
already discussed in 4.2, the selection rule depends on the polarization of the excitation
laser, the FORT polarization, and the external magnetic field. Fig. 7.14(b)−(f) are
detailed spectra of each magnetic sublevels. The spectral width are almost consistent
with the Doppler width.

Excitation
507 nm

Imaging
0.1 ms

Horizontal
FORT

50 ms

Evaporative
Cooling (�6 s)

Vertical
FORT

TOF
(5�10 ms)

Figure 7.13: (Left): Time sequence of the experiment and (Right): configuration of lasers
and the magnetic field.
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(a) 174Yb 3P2, m=+2

+2

+1

0-1

-2

(b)

3P2, m=0(d)3P2, m=+1(c)

3P2, m=-1(f)3P2, m=-2(e)

Figure 7.14: Selective excitation to five magnetic sublevels of the 3P2 state in 174Yb. (a):
The spectrum obtained by roughly scanning the frequency of the excitation laser. The
red solid line is a fit by five Gaussian functions with experimental parameters such as the
polarization of the excitation laser, the FORT polarization, and the external magnetic
field. (b)−(f): Detailed spectra of each magnetic sublevels.
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7.4 Measurement and control of ac polarizabilities

The ac polarizability is the important information when we use a FORT since it determines
the trap depth of the FORT. In general, the polarizabilities of the ground state and the
excited state are different, except for the case of the magic wavelength. Thus the resonance
frequency of atoms in a FORT depends on the FORT power. Usually, in order to measure
the ac polarizability, parametric resonance technique was used as we previously did in
section 6.1.5. However, thanks to the ultranarrow linewidth of the 1S0↔3P2 transition,
we can obtain much precise information than that obtained from the parametric resonance
experiment. In a FORT, the resonance frequency ν can be described as

ν = ν0 − I

4
(αP,m − αS), (7.8)

where ν0 is the transition frequency between unperturbed atomic states, I is the FORT
intensity, αP,m and αS are the polarizabilities of magnetic sublevel m of the 3P2 state and
the 1S0 ground state, respectively. We measured the dependence of the frequency shift
of the resonance of each magnetic sublevels (|m| = 0, 1, 2) on a FORT power. Since
the ac polarizability of the ground state αS can be precisely estimated, we can derive
the polarizability of the 3P2 state. Time sequence of the experiment and configuration of
lasers are shown in Fig. 7.15. In this experiment, the magnetic field was aligned almost
parallel to the polarization of the horizontal FORT.

Excitation
507 nm

Imaging
0.1 ms

Horizontal
FORT

50 ms

Evaporative
Cooling (�6 s)

Vertical
FORT

TOF
(5�10 ms)

Figure 7.15: (Left): Time sequence of the experiment and (Right): configuration of lasers
and the magnetic field.
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Temperature shift

When we determine the center frequency of each spectrum, we have to consider the
temperature shift as discussed in section 5.2. To do so, we have to know the value of
Ωg,ex which can be determined by the polarizability. In the present case, we already
know the rough value of the polarizability of the 3P2 state from the parametric resonance
experiment as shown in section 6.1.5. Thus, we first assumed the polarizability of the
3P2 state and fit the data to derive the temperature shift in which the free parameter is
the polarizability α1, the center frequency and the signal strength. After compensating
the temperature shift, we could estimate the polarizability. In this experiment, all of the
derived polarizability were well agreed with the fitted polarizability.

In the Fig. 7.16, three spectra corresponding to the 1S0↔3P2(|m|=2) transition for
three different FORT powers are shown as an example. The solid lines are the fit of data
by the (5.21). In order to measure the temperature of atoms, the TOF technique was
used. The arrows on the horizontal axis describe the unperturbed resonance frequency
of the spectrum shown with the same color. The center frequencies ν0 estimated by this
fitting are plotted as a function of the FORT powers in Fig. 7.17 with data corresponding
to |m| = 0 and 1. Using the known value of the polarizability of the ground state αS, the
polarizabilities of all of the magnetic sublevels of the 3P2 state are determined which are
listed in Table 7.4. In addition, from these observations, we can conclude that atoms in
all the magnetic substates of the 3P2 state can be optically trapped by a FORT at 532
nm, which is consistent with the result of the parametric resonance and also important
for future studies of the 3P2 atoms.

Table 7.3: Polarizability of the 3P2 state (B is almost parallel to the eFORT).

|m|=0 |m|=1 |m|=2 Unit

αP,m 41.8±0.3 40.6±0.3 38.3±0.1 mHz(mW/cm2)−1
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Figure 7.16: Due to the temperature shift (see 5.2), the observed resonance frequency
is slightly shifted from the true resonance frequency. In this figure, three spectra corre-
sponding to three different FORT powers 56, 146, and 250 mW are shown. Solid lines
are the fit of (5.12) to the data. Each arrow indicates the position of the true resonance
frequency for spectra in the same color.
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Figure 7.17: Measurement of the polarizability of every magnetic sublevel of the 3P2 state.
The resonance frequencies determined by considering the temperature shift are plotted as
a function of FORT powers. Solid lines are the linear fit to the data based on (7.8).
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7.4.1 Control of the polarizability

Five magnetic substates of Yb[3P2] in a FORT can be mixed with each other by the exter-
nal magnetic field. As a result, their eigenvalues depend both on the FORT polarization
and on the direction of the external magnetic field. One of the significant phenomena is
that, even if m = 0, the energy level (light shift) can be shifted by the external magnetic
field in a FORT. This technique was previously utilized as an ac Stark shift cancellation
method using the 3P1 state in Sr [84].

We performed the same measurement as that in the previous section by rotating
the external magnetic field. As an example, Fig. 7.18 shows how the magnetic field
“insensitive” resonance (1S0↔3P2, m = 0) can be easily shifted just by rotating the
external magnetic field. We also measured the polarizability of the 3P2(m=0) state in
case of B ‖ eFORT and B ⊥ eFORT as schematically shown in Fig. 7.19(Top). Fig.
7.19(Bottom) shows the frequency shift of the resonance for two cases. Here, one can
see the clear controllability of the polarizability of the 3P2(m=0) state. In particular, we
should mention to our successful realization of making the polarizability of the 3P2(m=0)
state almost same as that of the ground state. This would enable us to perform ultrahigh-
resolution spectroscopy of atoms in an optical lattice [8].
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174Yb, 1S0
�3P0 (m = 0)

Figure 7.18: The resonance frequency of the magnetic field insensitive 1S0↔3P2(m=0)
transition can be changed in a FORT just by rotating the external magnetic field. This
results from the mixing of eigenstates of atoms in a FORT which is induced by the external
magnetic field.
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Figure 7.19: Change of the polarizability of the 3P2(m=0) state. (Top) Configuration of
lasers and the external magnetic field are schematically shown. (Bottom) Polarizability is
clearly changed by rotating the external magnetic field. In particular, when B is almost
perpendicular to eFORT, the situation is similar to the magic wavelength situation where
the ac Stark shifts are almost the same for the 1S0 and 3P2(m = 0) states.
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7.5 Magnetic resonance imaging of ultracold atoms

Magnetic resonance imaging (MRI) is well known as the technique to visualize the hu-
man body mainly for the medical purpose. Such MRI system usually uses the magnetic
resonance of a hydrogen nuclear spin in a body, that is to say, the nuclear magnetic reso-
nance (NMR). In addition, by applying the magnetic gradient, the information about the
position of the NMR signal can be obtained.

In atomic physics, the MRI technique has also been developed mainly in the experi-
ment using alkali metals. In such experiments, a microwave pulse induces the transition
between two different hyperfine spin states in atoms which are addressed in a magnetic
field gradient. Sodium atoms in a magnetic trap was first investigate by using the MRI
technique [85]. One of the recent important experiments is the imaging of the Mott in-
sulator shells. By using the spin changing collisions, the MRI technique have enabled
the observation of the shell structure of the Mott insulator [86]. More recently, spatially
resolved microwave spectroscopy of a trapped Fermi gas with resonant interactions has
been demonstrated [87].

In this work, we developed the basic technique of the MRI. The basic idea is that
atoms in the 3P2(m=+2) state in a magnetic gradient can be energetically distinguished
by the ultranarrow 1S0↔3P2(m=+2) transition. In general, the transition linewidth is too
large to distinguish atoms in a realistic magnetic field gradient. In other words, the size
of the atomic cloud is too small to be addressed with the realistic magnetic gradient. To
the contrary, since the natural linewidth of the 1S0↔3P2 transition is extremely narrow,
we can distinguish atoms in a small region such as a FORT.

For example, let us imagine that the typical magnetic field gradient generated by the
MOT coils of 10 G/cm is applied to the atomic cloud. The Zeeman shift of the 3P2(m=+2)
state is 4 GHz/m in such a magnetic field gradient. The most narrowest laser linewidth
ever achieved reaches below 1 Hz [88], then we assume that we can use the excitation laser
whose linewidth is 1 Hz. Then, in principle, the spectral resolution can be expected to be
0.25 nm. In other words, we can energetically distinguish two atoms which are separated
to 0.25 nm. Furthermore, so far, this resolution is limited only by the technical reason
(laser linewidth). The natural linewidth of the 1S0↔3P2 transition is about 10 mHz which
is smaller than the above estimation by a factor of two. In addition, the magnetic field
gradient which is much larger than 10 G/cm is easily obtained. Hence, the extremely
high spatial resolution can be expected even with the present experimental technique in
this field.

The basic principle of this experiment is schematically shown in Fig. 7.20. When
the flat magnetic field is applied to the atomic cloud, the Zeeman shift induced in the
3P2(m=+2) state is same for all atoms in a cloud. Thus, the spectral width is mainly
determined by the Doppler width. On the other hand, when the magnetic gradient is
applied, the Zeeman shift induced to the atoms depends on the position, which leads
to the broadening of the spectrum of the 1S0↔3P2(m=+2) transition in addition to the
Doppler width.

We have used the ultracold atoms whose temperature is 0.5 µK. After evaporative
cooling, we have applied the magnetic gradient by turning on the MOT coil. Fig. 7.20
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shows the obtained spectra before and after applying the magnetic field gradient. We
can clearly observe the spectral broadening due to the MRI effect. We should also note
that the resonance signal became drastically weak as the magnetic gradient increased.
This is reasonable because the number of atoms which are resonant with the excitation
laser at a certain frequency decreases due to the position dependent Zeeman shift. Thus,
ideally, we should have used the same excitation time for two cases and detected how
the position dependent excitation in atomic cloud occurred in order to demonstrate the
MRI. Unfortunately, the resolution of our present imaging system is not high enough for
such a purpose. Instead, we made the excitation time longer to obtain the same signal
strength for both conditions. In this measurement, the excitation time is much longer
than the trap frequency. Thus, atoms passed over the resonant region for many times and
were excited. The larger the magnetic gradient became, the narrower the resonant region
became. Then, atoms had to pass over for many times to be excited, which resulted in
the longer excitation time.

In Fig. 7.20, spectra taken before and after turning on the MOT coils are compared.
Since we could not know where atoms were in the magnetic field gradient, it is not possible
to quantitatively analyze these spectra. Nevertheless, spectral broadening induced by the
magnetic gradient has been clearly observed.

This technique of spatial addressing has great potential for future experiments, such
as addressing of the individual site of the optical lattice potentials which must be a key
technique for the quantum computation experiment [82, 13] and the construction of the
quantum simulator [45].
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Figure 7.20: Demonstration of the magnetic resonance imaging. The magnetic field gra-
dient applied to atoms leads to spectral broadening of the magnetic field sensitive ultra-
narrow 1S0↔3P2(m = +2) transition.
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Chapter 8

High-resolution spectroscopy of a
BEC

One of the significant properties of a BEC is its large mean field energy. The mean field
energy U0 results from the interatomic interaction energy. At low energies where only the
s-wave scattering occurs, U0 of a BEC is described by

UBEC
0 =

4π~2

m
na, (8.1)

where m is the atomic mass, n is the number density and a is the s-wave scattering length.
Thus, the large number density n of a BEC results in its large mean field energy.

Previously the large mean field energy of a BEC was, for example, used to identify a
hydrogen BEC [89]. The BEC phase transition has been usually confirmed by the sudden
appearance of a dense central core inside a thermal cloud. However, that was not easy
with the hydrogen BEC since taking absorption images to see the spatial distribution of
hydrogen atoms was difficult due to technical reasons. Then, the large mean field shift of
the resonance frequency in a two-photon transition was used to identify a hydrogen BEC.

In experiments with alkali metals, the mean field energy has also played an important
role. For example, the collision shift in the clock transition |F, 0〉↔|F + 1, 0〉 in sodium
atoms was accurately measured by using the large mean field energy of a BEC [90]. One of
the recent remarkable applications of the mean field energy is the direct observation of the
Mott insulator shell structure [91]. In 3D optical lattice potentials, it was predicted that
the system should separate into Mott insulator shells with different occupation numbers
for sufficiently strong interatomic interactions. By using RF spectroscopy, Campbell et al.
detected the shift of the resonance frequency of the clock transition due to the layered
structure of the Mott shells with occupancies from n = 1 to n = 5. Since the mean
field energy is proportional to the number density (see (8.1)), the discrete frequency shift
corresponding to the number of atoms in each site was successfully observed.

It is true that all of these experiments are excellent, but there also exist some limita-
tions. First, the resolution of RF spectroscopy to detect the mean field energy in alkali
metals is currently limited by the finite interaction time broadening. Atoms in two dif-
ferent states feel different mean field energies because of the difference of the scattering
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length between a11 and a12 where axy is the scattering length between atoms in the states
x and y. This difference leads to the mean field shift ∆νBEC described by

∆νBEC =
2~
m

n(a12 − a11). (8.2)

In case of alkali metals, a12 − a11 is small. For sodium atoms as an example, a12 − a11 =
(3.15 − 2.71) = 0.44 nm which results in the frequency shift of ∆ν = 250 Hz for the
number density of n = 1×1014 cm−3. The interaction time broadening is more than 500
Hz. Thus in order to achieve the higher resolution, we have to use longer excitation RF
pulses which is so far difficult due to, for example, the short trap lifetime of atoms in such
a system [90]. Second, addressing atoms by using position-dependent Zeeman shift in a
stronger magnetic field gradient to pursue the higher spatial resolution [86] may affect
alkali metals in the ground state. This is because the total angular momentum F is no
longer the good quantum number under the strong magnetic field (Paschen-Back effect).

The ultranarrow 1S0↔3P2 transition1 in Yb has great possibilities to overcome such
obstacles. First, according to the result of this work, the mean field shift of this transition
in Yb is much larger than that of alkali metals as described in Table 8.1. The mean field
shift of the 1S0↔3P2 transition is larger than others by an order of one. In this work, this
large mean field shift enabled us to successfully observe not only the frequency shift but
also the distortion of the lineshape due to the mean field energy of a BEC which has never
been observed in alkaline metals. Second, the ground state of Yb is spinless. Hence any
strong magnetic field gradient for spatial addressing of Yb atoms by using the Zeeman
shift of the 3P2 state does not affect atoms in the ground state at all.

It is sure that Yb has two ultranarrow optical transitions, i.e., not only the 1S0↔3P2

transition but also the 1S0↔3P0 “clock” transition. However, the 1S0↔3P2 transition has
advantages in some points. In bosonic isotopes of Yb, the 1S0↔3P0 transition is strictly
forbidden. While a novel technique to realize it in bosonic isotopes by using a strong
magnetic field has been recently invented, the transition strength is still very weak [33, 35].
Thus, considering spectroscopy of a BEC, the much stronger (but narrow enough for high
resolution)1S0↔3P2 transition is desirable. In addition, since the 1S0↔3P0 transition is
the magnetic insensitive transition, addressing of atoms by the magnetic field gradient is
impossible, while the 3P2 state has four magnetic field sensitive sublevels: 3P2(m = ±1
and ±2).

In this study, we have demonstrated the detection of a mean field energy of a BEC by
using the ultranarrow 1S0↔3P2 optical transition in Yb. We have observed not only the
large mean field shift due to a BEC, but also the change of the lineshape which reflected
the density distribution of a BEC in a trap. Finally, we have successfully determined a12

from the observed spectrum. In the following, we will first introduce a mean field energy
of a BEC. Then, the spectral lineshape expected in spectroscopy of a BEC in a trap will
be discussed. After presenting the experimental method, we will show the experimental
results and discuss the observed spectrum in detail.

1The natural linewidth of 10 mHz corresponds to the energy resolution of 0.5 pK (= 5 × 10−13K)
which is the extremely high-resolution.
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Table 8.1: Frequency shift by the mean field energy of a BEC for the number density of
n = 1×1014cm−3.

a12 (nm) a11 (nm) ∆νBEC(Hz) Ref.
23Na 3.15 2.71 241 [90]
87Rb 5.19 5.32 −19 [91]
174Yb −33 5.53 −2792 [30] and this work.

8.1 Mean field energy

Pseudo potential

When two neutral atoms come so close to each other that atoms can see atomic nucleus,
the interatomic interaction is repulsive. Otherwise, atoms must collapse and cannot stably
exist. The length scale of this repulsive core is, in general, less than 1 nm. On the other
hand, there is the attractive interaction known as van der Waals force between neutral
atoms. The reach of the van der Waals force is about 10 nm. As a result, the net force
between neutral atoms is sum of the repulsive force by a hard-sphere and the attractive
force by the van der Waals force. Whether the net force becomes repulsive or attractive
depends on atomic species2. In dilute neutral atomic gasses, the average interatomic
length is 100 nm. Thus, the effect of the complicated realistic interatomic potential
within 10 nm can be described only by a phase shift δl of the scattering wave function
before and after the scattering. This can be seen in the radial part of the scattering wave
function Rkl(r) in the r →∞ limit:

Rkl(r) ' 1

kr
sin(kr + δl − π

2
l). (8.3)

In particular, when the only s-wave scattering can occur at low energies, the s-wave phase
shift is given by

δ0 = −ka, (8.4)

where k = |k| is the wavenumber vector of the scattering wave and a is the scattering
length. According to the (8.3), δ0 shifts the origin of Rkl(r) by a. Thus, the scattering
wavefunction ψ(r) for the s-wave scattering in the center-of-mass coordinate satisfies the
Schrödinger equation

(∇2 + k2)ψ(r) = 0 (r > a) (8.5)

ψ(r) = 0 (r ≤ a). (8.6)

This indicates that when we consider the s-wave scattering, we can regard the interatomic
potential as a hard-sphere potential with radius a.

2In case of 174Yb, it is repulsive.
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In general, it is difficult to solve (8.5) due to the boundary condition (8.6). However,
Huang and Yang [92] proved that, for s-wave scattering, (8.5) and (8.6) are equivalent to
the equation

(∇2 + k2)ψ(r) = 4π
tan(ka)

k
δ(r)

∂

∂r
(rψ(r)). (8.7)

At low energies,

tan(ka)

k
= a +

1

2
(ka)2 2

3
a + · · · .

When we consider the s-wave scattering, the effect of the terms a3 (p-wave) and higher
can be neglected. As a result, (8.7) becomes

−~
2∇
m

ψ(r) + U(r)ψ(r) = Eψ(r)

U(r) =
4πa~2

m
δ(r)

∂

∂r
r. (8.8)

Thus the interatomic interaction potential at low energies (s-wave scattering) is given by
(8.8) which is known as a pseudo potential.

Thomas-Fermi approximation

Using the pseudo potential, the Hamiltonian H for N atoms in a trap Vext(r) at low
energies is given by

H = −
N∑

i=1

{
~2

2m
∇2 + Vext(ri)

}
+

4πa~2

m

∑
i<j

δ(ri − rj)
∂

∂rij

rij. (8.9)

In a BEC, all atoms occupy the same one-particle wavefunction φ(r). Thus we can
introduce ψ(r) as a wavefunction of a condensate which is defined by

ψ(r) =
√

Nφ(r). (8.10)

Then, the density of a condensate n(r) can be described by

n(r) = |ψ(r)|2. (8.11)

Now we can present the energy E of the system and the total atom number N as follows3.

E(ψ) =

∫ [
~2

2m
|∇|2 + Vext(r)|ψ(r)|2 +

1

2

4πa~2

m
|ψ(r)|4

]
dr

N =

∫
|ψ(r)|2dr. (8.13)

3Here, we use the fact that ψ(r) doesn’t diverge at r = 0. In such a case, the pseudo potential becomes

U(r) =
4πa~2

m
δ(r). (8.12)

This is because

U(r)ψ(r) =
4πa~2

m
δ(r)

∂

∂r
(rψ(r))
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Minimizing the energy E with the binding condition (8.13) by the method of Lagrange
multipliers gives us the time-independent Gross-Pitaevskii equation:

[
− ~

2

2m
∇2 + Vext(r) +

4πa~2

m
|ψ(r)|2

]
ψ(r) = µψ(r) (8.14)

where µ is the chemical potential. Here the third term in the left-hand side is called mean
field energy.

When we treat a BEC with a large number of atoms, the mean field energy is much
larger than the kinetic energy. Then the kinetic energy term can be safely neglected. This
is known as Thomas-Fermi approximation. In this approximation, the Gross-Pitaevskii
equation becomes {

Vext(r) +
4πa~2

m
|ψ(r)|2

}
= µψ(r), (8.15)

and then the density distribution is given

n(r) = |ψ(r)|2 =





(
4π~2a

m

)−1

(µ− Vext(r)) (µ > Vext(r))

0 (µ ≤ Vext(r))

(8.16)

This implied that the density distribution of a BEC in a trap is the inverse of the trap
shape.

Line shape of the excitation spectrum of BEC in a trap

Let us consider the excitation of atoms in a BEC in a trap. We assume that the excitation
is so weak that the excited atoms interact only with the atoms in the ground state. Thus,
the interaction between atoms in the excited state is neglected.

According to the (8.14), the effective potentials V eff for a BEC in the ground state |g〉
and an atom in a excited state |e〉 in a trap are

V eff
|g〉 (r) = Vext(r) +

4π~2agg

m
n(r) = µ

V eff
|e〉 (r) = Vext(r) +

4π~2age

m
n(r), (8.17)

where a12 denotes the scattering length between atoms in the state |1〉 and |2〉. In Fig.8.1,
these effective potentials are schematically shown in case of age < 0.

=
4πa~2

m

(
δ(r)ψ(r) + δ(r)r

∂ψ(r)
∂r

)

=
4πa~2

m
δ(r)ψ(r).
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The lineshape of the excitation spectrum of a BEC in a trap can be derived by calculat-
ing the transition probability from the flat potential V eff

|g〉 (r) = µ to individual vibrational

levels in V eff
|e〉 (r). The resulting lineshape is given by [93]

I(ν) =
15h(ν − ν0)

4n0∆U

√
1− h(ν − ν0)

n0∆U
, ∆U =

4π~2

m
(age − agg), (8.18)

where ν0 is the unperturbed resonance frequency (including the recoil shift in our exper-
iment), n0 is the peak number density. The lineshape Eq. (8.18) is schematically shown
in Fig. 8.1(Right). Reflecting a mean field energy, the spectrum is drastically shifted to
the red side from the original position in case of age < 0. If age > 0, it is shifted to the
blue side. The asymmetry of the lineshape reflects the anomalous density distribution of
a BEC in a trap.

3P2

1S0

Frequency 

Signal

Figure 8.1: (Left): Effective potentials for a BEC in a harmonic trap are schematically
shown both for the 1S0 state and the 3P2 state in case of a12 < 0. Reflecting the density
distribution of atoms in a trap, the effective potentials are modified as described in Eq.
(8.17). (Right): Excitation spectrum (Eq. (8.18)) between these two effective potentials
is shown. Due to the mean field energy, the resonance frequency shifts and the lineshape
becomes distorted.

8.2 BEC in a harmonic trap

In Fig. 8.2, the time sequence and configurations of lasers and the magnetic field are
schematically shown. After evaporative cooling for 6 s, atomic temperature reaches 1.2,
0.5, 0.3 µK and a BEC in this measurement. This is done by reducing the final FORT
powers depending on the desired atomic temperature. Then the excitation laser is irra-
diated for 50 ms. The intensity of the excitation laser is less than I = 100 mW/cm2. We
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use the magnetic-field-insensitive 1S0↔3P2(m = 0) transition for spectroscopy. After the
TOF time t, the absorption images are taken.

Excitation
507 nm

Imaging
0.1 ms

Horizontal
FORT

50 ms

Evaporative
Cooling (�6 s)

Vertical
FORT

TOF
(5�10 ms)

Figure 8.2: (Left): Time sequence for spectroscopy of a BEC. (Right): Configuration
of the polarization of the FORT, the magnetic field, and the incident direction of the
excitation laser in this measurement are schematically shown.

The magnetic field is applied to almost vertical to the polarization of the horizontal
FORT beam. Using thermal atoms, the light shift in this configuration was measured in
advance as shown in Fig. 8.3. The temperature shifts have been already compensated
(removed) by using the (5.12). As a result, the ratio of the trap depth between the
3P2(m = 0) and 1S0 states is determined to be U3P2(m=0)/U1S0

= 1.02± 0.01 which is very
close to the magic wavelength condition.

Figure 8.4 (Top) shows the observed spectra for thermal atoms at three different
temperatures and a BEC. In this figure, only the frequency drift of the excitation laser
due to the instability of the ULE cavity was compensated. Such drift was estimated from
the difference of resonance frequencies in two data taken at two different times under the
same conditions (∆νLS in Table 8.2). We assumed that the frequency of the excitation
laser linearly drifted during this measurement. Solid lines in spectra of thermal atoms
(T=1.2, 0.5, and 0.3 µK) are fit of (5.21). All spectra are equally shifted by the recoil
shift.

A significant feature in Fig. 8.4(Top) is the large shift of the resonance frequency
after the BEC transition. This is clearly caused by sudden increase of the atomic density
due to the BEC transition. Also, the spectral lineshape is distorted, which reflects the
characteristic density distribution of a mean-field limited BEC in a harmonic trap. All
these features can be well described by (8.18) (solid line in the BEC spectrum). The
scattering length a11 has been accurately measured to be 5.53 nm via photoassociation
spectroscopy in our laboratory [30]. Thus, the free parameter in (8.18) is only a12. By
fitting (8.18) to the observed spectrum, we could estimate that a12 = −33(±10) nm.

Using a12 determined in this study, we now can estimate the collision shift ∆νcol for
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Figure 8.3: Measurement of the light shift in the configuration of Fig. 8.2 (Right). Tem-
perature shifts in these data have been already removed.

thermal atoms4 which is listed in Table 8.2. In addition, the position of atoms in a trap
slightly shifts from the focal point of the FORT laser due to the gravity. This also leads
to the shift of the resonance frequency estimated as ∆νgr in Table 8.2. After compensated
all frequency shifts5 mentioned above except for the mean field shift in a BEC spectrum,
we again compare the BEC spectrum with those of thermal atoms as shown in Fig. 8.4
(Bottom). Here, one can clearly see the frequency shift caused by the mean field energy
of a BEC. As predicted in (8.18), the upper edge of the BEC spectrum coincides with the
unperturbed (no collision shift) resonance frequency.

In conclusion of this section, we have successfully detected the mean field energy of a
BEC by using an ultranarrow 1S0↔3P2 transition in Yb. From the fitting of the lineshape,
we can also determine the s-wave scattering length between atoms in the 1S0 state and
the 3P2 state. Now the mean field shift corresponds one-to-one with the number density
n in (8.18). Also, the s-wave scattering length a12 = −33 nm is very large, compared to
that of alkali metals (see Table 8.1). Furthermore, by performing the spectroscopy in a
magnetic field gradient, it is possible to address atoms by the position-dependent Zeeman
shift. As a result, it is well within our ability to obtain the high resolution density profile
of atomic clouds at any point in a trap by using the 1S0↔3P2 transition in Yb. Such a
technique must be a powerful tool in the studies of, for example, the phase separation in
the mixture of two (or more) degenerate gasses and the density structure of condensates
in 1D, 2D and 3D optical lattice potentials.

4Note that the collision shift is twice of the Eq. (8.2). In general, the collision shift is given by

∆νcol = g2(0)
2~
m

n(a12 − a11), (8.19)

where g2(0) is the equal point value of the second order correlation function. g2(0) = 2− (nBEC/n)2 for
a uniform Bose gas in thermal equilibrium [94, 95].

5The broadening due to the finite size of the condensate which implies a distribution of momenta [96]
is estimated to be about 10 Hz in our case. Hence, it is neglected.
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Figure 8.4: Spectroscopy of ultracold 174Yb atoms and a BEC in a FORT by using the 1S0

↔ 3P2(m=0) transition. Solid lines in spectra of thermal atoms are fit of the lineshape of
(5.21) to the data. The solid line in the BEC data is a fit of (8.18) to the spectrum. (Top):
Only the ULE drift of the excitation laser was compensated. (Bottom): All frequency
shifts (see Table 8.2) except for the mean field shift in a BEC spectrum are compensated.
Here one can clearly see the mean field shift of a BEC.
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Table 8.2: Experimental parameters for data in Fig. 8.4. T : atomic temperature, ω̄: the
geometrical average of the trap frequency, n: number density, ∆νcol: collision shift, ∆νLD:
light shift, and ∆νgr: frequency shift by the gravity.

T (µK) N ω̄/2π (Hz) n(cm−3) ∆νcol (kHz) ∆νLS (kHz) ∆νgr (kHz)

1.2 1.2×105 610 5.6×1013 −3.1 −5.9 0.0
0.5 5.9×104 420 4.4×1013 −2.5 −2.9 0.1
0.3 4.1×104 370 6.8×1013 −3.8 −2.0 0.1

BEC 2.9×104 140 4.8×1014 −12.8 −1.4 0.2

8.3 BEC in 1D optical lattice potential

Using optical lattice potentials, we can tightly confine atoms in a small region within the
length scale of the optical wavelength. When such atoms are excited by the laser along
the confinement axis, the laser field felt by atoms is phase modulated by the oscillation
frequency. As a result, sidebands appear in the excitation spectrum. This kind of tight
confinement is known as the Lamb-Dicke confinement which is characterized by the Lamb-
Dicke parameter [97]

δ = k507

√
~

2mΩg

=

√
E507

R

~Ωg

, (8.20)

where k507 and E507
R (= 0.21µK for 507 nm) are the wavenumber and the recoil energy of

the excitation laser. Ωg denotes the trap frequency of the ground state. Thus, the smaller
δ means the tighter confinement.

A significant feature of the Lamb-Dicke confinement is that the carrier component
doesn’t suffer from the Doppler effect, which enables the Doppler free spectroscopy. Thus
spectroscopy of thermal atoms and a BEC in optical lattice potentials enables us to
precisely measure the mean field shift and broadening of the spectrum without suffering
from the Doppler broadening. In addition, since the tight confinement of lattice potentials
increase the number density at each site, the effect of the mean field energy become larger
than that in usual harmonic traps.

In Fig. 8.5, the time sequence of the experiment and configurations of lasers and
the magnetic field are schematically shown. After evaporative cooling to make a BEC,
1D optical lattice potential was ramped up to 9.6ER for 100 ms. Since we observed the
interference pattern between BEC arrays, we regard that a BEC was adiabatically loaded
into optical lattice potentials. Then the excitation laser was irradiated for 50 ms along
with the optical lattice laser. By turning off all lasers and letting atoms freely expand in
the TOF time t, we took absorption images.

The observed spectrum is shown in Fig. 8.7. First, we can clearly identify two peaks.
These peaks correspond to the |1S0, 0〉 → |3P2, 0〉 and |1S0, 0〉 → |3P2, 1〉 transitions, where
|a, n〉 denotes the state of atoms in the electric state a and the nth vibrational levels of
the trap. In this measurement, the Lamb-Dicke parameter is (δ =) 0.4. Assuming that
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the trap depth of the 1S0 state is same as that of the 3P2 state, the ratio of the transition
strength between the |1S0, 0〉 → |3P2, 0〉 and |1S0, 0〉 → |3P2, 1〉 transitions is given by [97]

P00 : P01 = 1 : δ2 = 1 : 0.16, (8.21)

which is consistent with the observed signal strengths.
To analyze the width of the observed spectrum, we need to know the density distribu-

tion of condensates in each site. To this end, based on the discussions in [98], we assume
that the wave function of a BEC in 1D optical lattice potentials is given by

Φ0(r) =
∑

k=0,±1,···,kM

fk(y)Φk(r⊥), (8.22)

where k labels each site and 2kM + 1 is the number of lattice sites. fk(y) and Φ(r⊥) are
the wave function along the axial (confinement, y-axis) direction and the radial direction
(xz-plane), respectively. Here we assume the Gaussian function fk(y) = e−(y−kd)2/2σ2

where d is the lattice interval and σ characterizes the width of the condensates along the
confinement direction in each well. σ is given by σ = d/(πs1/4) with s = ((~ωy)/(2E

532
R ))2,

ωy the trap frequency along the confinement direction and E532
R the recoil energy of the

FORT laser (E532
R = 0.194 µK for 532 nm). We assume that the confinement along the

axial direction is so strong that σ is not affected by interaction energies in each site.
On the other hand, the radial direction should be treated by the Thomas-Fermi ap-

proximation. Hence the wave function of the kth site in the radial direction is give by

|Φk(x, z)|2 =
m

2
√

2π~2a
µk

(
1− r2

⊥
(R⊥)2

k

)
, (8.23)

where µk and (R⊥)k =
√

2µk/mω2
(⊥) are the chemical potential and the Thomas-Fermi

radius of the kth condensate, respectively. Here, m is the atomic mass, a is the s-wave
scattering length, r⊥ =

√
x2 + z2 and ω(⊥) is the radial trap frequency of the envelope

harmonic potential. µk satisfies

µk =
1

2
mω2

(y)d
2(k2

M − k2), (8.24)

where ω(y) denotes the axial trap frequency of the harmonic potential (not the lattice trap
frequency). From the normalization condition N =

∑
Nk, the kM is give by

kM =

√
2~ω̄

mω2
(y)d

2

(
15

8
√

π
N

a

aho

d

σ

)1/5

. (8.25)

Here, ω̄ = (ω(y)ω
2
(⊥))

1/3 is the geometrical average of the trap frequency of the harmonic

trap, aho =
√
~/mω̄ is the oscillator length. The number of atoms in each site is give by

Nk =
15

16

N

kM

(
1− k2

k2
M

)2

. (8.26)
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In this work, the parameters are the followings: ω(y) = 2π×140 Hz, ω(⊥) = 2π×99 Hz,
d = 266 nm, N = 5×104, a = 5.53 nm [30], a/aho = 7.3×10−3, s = 9.6 and σ/d = 0.18.
As a result, kM = 13 and the chemical potential µk in each site is shown in Fig. 8.6(Top).
In this figure, we compare the chemical potential at each site with ~ω⊥ and ~ω(y). In Fig.
8.6(Top-Left), ~ω(y) À µk for every site. Thus we can justify the approximation that we
can determine the Gaussian width by neglecting the two-body interaction at each site.
Similarly, ~ω⊥ < µk for all k justifies the application of the Thomas-Fermi approximation.

Using the Eq. (8.23), the atomic peak density (r = 0) at each site could be determined
as shown in Fig. 8.6(Bottom). Now we can calculate the spectral shape considering that
the observed spectrum is summation of lineshapes Eq. (8.18) in each lattice site whose
atomic density is given by Fig. 8.6(Bottom). Since we determined the a12 from the
BEC spectroscopy in the previous section, there are no free parameters. The result of
this calculation is shown in Fig. 8.7 as a solid line which well agrees with the observed
spectrum.

As a result, we can conclude that we have succeeded in spectroscopically observing the
on-site interaction at each site of the 1D optical lattice potentials by using an ultranarrow
1S0↔3P2 transition in Yb. Since in the experiments using the optical lattice potentials,
the hopping energy and the on-site interaction energy are the important parameters. The
technique developed in this work enables us to precisely measure the on-site interaction
energies in such experiments. Also, the density distribution of mixtures of condensates in
optical lattice potentials can be precisely observed. Moreover, by additionally using the
MRI technique, we can observe the density distribution of any lattice site you want to
see.

Excitation
507 nm

Imaging
0.1 ms

Horizontal
FORT

100 ms

Evaporative
Cooling (�6 s)

Vertical
FORT

TOF
(5�10 ms)

1D Lattice

50 ms

9.6ER

Figure 8.5: (Left) Time sequence and (Right) configurations of lasers and the magnetic
field for 1D optical lattice experiment are shown.
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energy of motion along the axial axis (Left) and the radial axis (Right). (Bottom):
Calculated atomic density at each site are shown.
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Figure 8.7: (Top): Experimental situation in spectroscopy of a BEC in 1D optical lattice
potentials is schematically shown. The tight confinement of lattice potentials leads to
the increase of the separation between vibrational levels of a trap. (Bottom): Observed
spectrum. In addition to the carrier spectrum corresponding to the |1S0, 0〉→|3P2, 0〉
transition, the heating sideband |1S0, 0〉→|3P2, 1〉 was also successfully observed. The
solid line is the calculated spectrum assuming the mean field broadening by “mini” BECs
in each lattice site.
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Chapter 9

Frequency measurement of the clock
transition in 174Yb

The 1S0↔3P2(m = 0) transition is ultranarrow and insensitive to a magnetic field. It have
been one of the candidates of the frequency standards using the optical transition [3]. We
measured the frequency of the clock transition by using an optical frequency comb. In
this chapter, we first introduce some basics of a frequency comb. Then the frequency
measurement of the clock transition will be presented.

Frequency is one of the most accurately measured physical quantities [99]. Since the
optical frequency f ∼ 106 GHz is much larger than the present electronic frequency
counters, it is impossible to directly measure the optical frequency. Hence, techniques to
convert an optical frequency to the radio frequency where we can use accurate frequency
counters have been developed for a long time such as harmonic frequency chains [100],
interval bisection [101] techniques and so on. However, the breakthrough is a frequency
comb technique invented by Udem et al. in 1999 [102].

Frequency comb is based on the mode locked femtosecond laser pulses. In the fem-
tosecond laser cavity with cavity length L, a pulse is circulating with the round trip time
T = vg/L (for the bow-tie cavity) where vg is the group velocity of pulses. As a result,
the output pulses are generated with the repetition rate frep = 1/(2πT ) (∼ 1 GHz). The
group velocity vg which is the velocity of the pulse envelope is, in general, different from
the phase velocity vp which is the velocity of the carrier wave. The phase of a carrier
wave in each pulse, then, shifts by ∆φ from neighbor pulses.

In a frequency domain, femtosecond pulse trains are equally spaced frequency combs.
The interval between each comb is given by frep. The phase shift ∆φ appears as so called
carrier envelope frequency offset fCEO (< frep). Thus the frequency of the nth comb f is
given by

f = nfrep + fCEO. (9.1)

Let us consider the beat signal (fbeat) between the frequency comb and an external laser
flaser. Considering a beat signal from the nearest n0th comb, the frequency of the external
laser can be written as

f = fCEO + n0frep + fbeat. (9.2)



9.1. FC 8003 – MENLO SYSTEMS GMBH 134

Since f locates somewhere between two frequency combs, fbeat is always smaller than
frep. Thus, all frequencies fCEO, frep and fbeat are in a radio frequency region and can be
accurately measured by frequency counters. Also, it is possible to determine the integer
n0 (∼106) by using a common wavemeter. As a result, the absolute frequency f of the
external laser can be accurately measured by (9.2).

When we use the frequency comb, we first have to stabilize (determine) frep and fCEO

in (9.2). To this end, using the 10 MHz frequency standard based on a Coordinated
Universal Time (UTC) is desirable.

9.1 FC 8003 – Menlo Systems GmbH
A

O
M

H
W

P
Detector

Photonic Crystal Fiber

Ti:S Crystal

Verdi V-8

Prism
pair

SHG 

frep

fceo

fb 

H
W

P

H
W

P

HWP

HWP

Detector

Detector measured
laser

Grating

Ti:S Pulse Laser

Dichroic
Mirror

: mirror : PBS : lens : glass plate : concave mirror

Figure 9.1: Schematics of the frequency comb system (FC 8003, Menlo Systems GmbH)
used in this study.
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Figure 9.1 shows the optical frequency comb system1 used in this work (FC 8003, Menlo
Systems (GmbH)). A femtosecond cavity is designed to make frep lie around 825 MHz.
A photonic crystal fiber [103, 104] enables the octave spanning of the comb region which
is necessary to detect the fCEO. The following optics are designed to detect and stabilize
the frep and fCEO which is explained below.

We note that in stead of the frequency standard based on a UTC which is required to
stabilize frep and fCEO, we used the Rb frequency standard (PRS10, Stanford Research
Systems) which will be referred as “Rb clock” in this thesis. To estimate the accuracy of
the Rb clock, we compared the Rb clock signal with the UTC(NICT) after the measure-
ment.

9.1.1 frep

Figure 9.2: Block diagram of the RF system to stabilize frep to the Rb clock.

Detection

frep usually lies between a few 10 MHz and a few GHz. Thus it can be determined by
directly measuring the pulse interval with a fast photodiode.

Stabilization

To stabilized the frep to the Rb clock, the RF system described in Fig. 9.2 is used.
A double-balanced mixer mixes the frep and Rb clock signal and converts the frep (∼
820 MHz) down to ∼ 20 MHz. Next, it is additionally mixed with the DDS (Direct
Digital Synthesizer) signal. By using a PLL (Phase-Locked Loop), the error signal can be
obtained to lock the downconverted signal to the DDS signal. Since frep = L/(2πvg), the
feedback signal is applied to the PZT attached to one of mirrors in a femtosecond laser
cavity2.

1This frequency comb belongs to NICT, Tokyo. We moved the system from Tokyo to Kyoto before
the measurement.

2The original PZT driver installed in FC 8003 was very noisy. We replaced it by the PTZ driver
M-2647 (MESS-TEK, Japan).
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In the frequency measurement, frep was adjusted by the DDS frequency by several Hz
in order to place the beat frequency between the comb and the measured laser at the
appropriate RF frequency for the frequency counter (20 ∼ 30 MHz in this system).

9.1.2 fCEO

Figure 9.3: Block diagram of the RF system to stabilize fCEO to the Rb clock.

Detection

Since fCEO is caused by the phase difference in each pulse, we require the interferometer.
Thanks to the photonic crystal fiber, the comb contains an optical octave. Let us consider
the beat signal between the second harmonics of the nth comb fn and the 2nth comb f2n

which can be written as

2× fn = 2nfrep + 2fCEO

f2n = 2nfrep + fCEO.

(9.3)

Thus 2× fn − f2n = fCEO. The second harmonic of a comb is obtained by a BBO crystal
and interfered with the original comb laser. A beat signal is detected by a fast photodiode.
The prism pair in Fig. 9.1 is used to adjust the time delay of one arm of the interferometer.

Stabilization

Figure 9.3 shows the RF system to lock the fCEO to the Rb clock. fCEO is always stabilized
at 80 MHz by locking it to Rb clock signal (10 MHz × 8 ). An error signal obtained by
a PLL is feedbacked to the RF power used to adjust the pump power of the femtosecond
laser [105].

9.1.3 Position of frep and fCEO

When we use a frequency comb, four kinds of positions of each frequency are possible
as shown in Fig. 9.4. To determine whether the measured frequency f is upper side
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Case 1.

nn-1 n+1

comb

measured laser

0

fbfceo

Case 3.

nn-1n-20

fceo

Case 2.

nn-1 n+10

frep

fceo

Case 4.

nn-1 n-20

fceo

frequency
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Figure 9.4: Four kinds of positional relationship of f , frep, and fCEO are possible.

or lower side of the comb, we change the DDS frequency by a few Hz. If f is upper
side of the comb (Case 1 and 2 in Fig. 9.4), the beat frequency fbeat becomes small by
increasing the frep and vise versa. Similarly, as for the fCEO, if it is +80 MHz (Case 3
and 4 in Fig. 9.4), the beat frequency fbeat becomes small as fCEO increases by changing
the RF power applied to the AOM. In order to determine the number of comb n in (9.2),
we use the wavemeter WA-1500 (Burleigh/EXFO). Further information about the comb
measurement is described in [106].

9.2 Experiment and analysis
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Figure 9.5: Typical spectra of the 1S0↔3P2(m=0) transition.

We excite atoms in a FORT whose wavelength is not a magic wavelength. Thus, the
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transition frequency suffers from the light shift depending on a FORT power. To remove
such effects, we measured the transition frequency at three different FORT powers and
extrapolated the unperturbed resonance frequency at zero FORT power. Note that the
weak magnetic field was applied to separate the clock transition from other magnetic
sensitive transitions. Also, one of the FORT lasers of the crossed FORT configuration
was turned off just before the excitation to eliminate the additional light shift.

Figure 9.5 shows typical spectra of the clock transition. The number of atoms in
the ground state is plotted as a function of the frequency offset of the excitation laser
(507 nm). The spectral width is determined almost by the Doppler width. The atomic
temperature is about 1 µK in this measurement. We chose 11 frequencies around the
resonance and measured the laser frequency by a comb for 100 s at each frequency. Since
our typical experimental procedure (loading, cooling and excitation of atoms) takes 10 s,
more than 10 CCD images were taken in order to measure the number of atoms.

The center frequency is determined as follows. We first fit the summation of the sine
function and the Gaussian function to the data. In some data, we found the slight shift
of the background level due to the instability of the initial number of trapped atoms. As
shown in Fig. 9.5, such a shift can be well described by the sine function. This may
be caused by the sine-shape frequency shift of the MOT laser for a long term which is
stabilized to the ULE cavity.

In order to carry out the weighted fitting of data, we convert the error in the x axis
σx (frequency) to that in y axis σy by taking [107]

σy(equiv) =

√
σ2

y +

(
df(x)

dx
σx

)2

, (9.4)

where f(x) is a fitting function. Then, we used the weighted least-square fit. Here, note
that we have to consider the temperature shift, that is to say, we use not the Gaussian
function but the (5.21). However, the ratio of the trap depth of the ground state to
that of the excited state in mex is required which is not known before the fitting. Then
we regards mex as one of the fitting parameters. Since we could separately estimate the
mex from the fitting results, we evaluated the consistency between these two values and
estimated mex.

We also compensated the collision shift by (5.26) and the recoil shift by (5.11). Using
the scattering length between atoms in the ground state and the 3P2 state a12 obtained
by the BEC spectroscopy (see section 8.2), the collision shift is estimated to be 2∼3 kHz
in the present case. In addition, when the trap depth is shallow, we have to consider the
effects of the gravity (= 0.2 µK/µm) while it was relatively small (about 1 kHz) in this
measurement.

Finally, considering all of these frequency shifts, the unperturbed frequency is de-
termined by the linear weighted least-square fit as shown in Fig. 9.6. The transition
frequency is determined to be

590 902 342 562± 3± 60 kHz. (9.5)

Here The first error results from the statistical uncertainties originating from fitting of the
data to find a resonance frequency, linear fitting of the observed resonance frequencies,
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and the frequency counting. The second error is associated with uncertainties of the Rb
frequency standard (10 MHz) used for the optical frequency comb which is estimated
below.
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Figure 9.6: Resonance frequencies are shown as a function of the FORT power. Each
resonance frequency was measured by an optical frequency comb.

9.2.1 Rb clock

UTC (NICT)

Local oscillator

Rb-clock

Splitter

TIC

time

Figure 9.7: Block diagram of the DMTD system.

In order to evaluate the measured frequency, we estimated the accuracy of the Rb clock
(PRS10, Stanford Research Systems). To this end, we compared the Rb clock with the
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UTC(NICT) by a DMTD (Dual Mixer Time Difference) system. The mechanism of the
DMTD system is schematically shown in Fig. 9.7. It has two inputs and one output. The
reference signal, UTC(NICT)-10 MHz, is put into the input A. The measured signal, the
Rb-clock, is put into the input B. Then, the DMTD system outputs the phase difference
∆φ = (tB − tA)νA where tB − tA is the time interval between the input A and B. By
observing ∆φ for a long time and if ∆φ is

1. constant, νA = νB

2. decreasing, νA < νB

3. increasing, νA > νB.

Thus, we can determine whether the Rb clock frequency is larger or smaller than the
UTC(NICT). Qualitatively, the difference can be described by

∆t =

(
1

νA

− 1

νB

)
× ν0 × T, (9.6)

where ν0 = 10 MHz, T is the total measurement time and ∆t is the change of (tA − tB)
during T . Since νA ∼ νB ∼ ν0, this equation can be written as

∆ν =

(
∆t

T

)
ν0, (9.7)

where ∆ν = νA − νB. For example, let us consider the case where the ∆φ decreases
from 0.7 to 0.4 during the measurement time T = 8×104 s (about one day). Then, since
∆t = (0.7− 0.4)× 10−7 = 3× 10−8 s, we can state that the measured frequency is larger
than the UTC(NICT) by 4 µHz. In general, the result is described by ∆ν/ν0 as a function
of measurement time.

Figure 9.8 shows the stability of Rb clock when we change the magnetic field and
temperature around it. Based on this measurement, we evaluate all possible environmental
errors (temperature, magnetic field) and estimated the error of 60 kHz.

Finally, in Fig. 9.9, we show the Allan deviation between Rb clock and UTC(NICT)
signal. The stability is limited by the stability of Rb clock (∼ 10−12 at 100 s). In order
to improve the accuracy of the frequency measurement, we should link the Rb clock to
the GPS signal for a long term frequency stability and may use the hydrogen maser for
the short term frequency stability.
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Figure 9.8: Frequency instability of Rb clock against the change of the external magnetic
field and temperature. Rb clock was compared to the UTC(NICT) signal by the DMTD
system. Magnetic field up to 1 G was applied and the temperature was changed from 15
to 35 ◦C.
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Figure 9.9: Allan deviation between Rb clock and UTC(NICT). The stability is limited
by the stability of Rb clock (∼ 1012 at 100 s).
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Chapter 10

Summary and outlook

10.1 Summary

Optical trapping of 3P2 atoms and their unique collisional properties

We investigated the unique collisional properties of 3P2 atoms. In previous studies, evap-
orative cooling of 3P2 atoms in a magnetic trap was unsuccessful due to the large trap loss
caused by multichannel collisions in a magnetic trap. Therefore, we decided to trap 3P2

atoms in an optical trap (FORT), which can trap 3P2 atoms in every magnetic sublevel
with the same strength. We can expect that, although multichannel collisions can still
occur, they will not lead to the trap loss.

To this end, a new technique to prepare ultracold and dense 3P2 atoms in a FORT
was developed in this study. We first prepared pre-cooled 1S0 atoms in a FORT and then
optically excited such atoms to the 3P2 state. By this new method, we achieved a number
density of 2 × 1013 cm−3 at a temperature of 2 µK with a phase space density (PSD) of
0.01. Our newly achieved number density is larger than that in a previous study by an
order of three [1].

While a trap loss due to the multichannel collisions must be suppressed in our FORT,
we still observed large trap loss due to two-body inelastic collisions. Thus, we deduce the
existence of a different inelastic collisional process, which we interpret as fine-structure
changing collisions in this ultracold temperature regime. The previous theoretical studies
revealed details of fine-structure changing transitions in collisions of Mg[3Pj], O[3Pj],
Sc[2Dj], and Ti[3Fj] atoms with closed-shell atoms at a high temperature. However,
there has not been any theoretical study on the fine-structure changing collisions between
atoms in the 3P2 state at ultralow temperatures achieved in the present study. While
a recent experiment on magnetically trapped Ca atoms studied multichannel collisions
between 3P2 atoms and discussed the possibility of the fine-structure changing process [2],
we believe that our study is the first definite experimental measurement of this process
between 3P2 atoms. For further understanding of the observed large inelastic collision
rate and possibilities of the fine structure changing collisions, a quantitative theory on
the collisional properties of 3P2 atoms is highly desirable.
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High-resolution spectroscopy of ultracold atoms and BECs using the ultranar-
row 1S0↔3P2 transition

The other important achievement in this study is the successful observation of the ultra-
narrow magnetic quadrupole 1S0 ↔ 3P2 transition (507 nm) in Yb bosonic (174Yb) and
fermionic (171Yb, 173Yb) isotopes.

Previously, studies on ultranarrow transitions in two-electron atoms have aimed en-
tirely at ultraprecise frequency standards. In contrast, this study showed how powerful
the ultranarrow transition is as a tool for the spectroscopy of ultracold atoms and BECs.

We first developed a 507-nm ultranarrow-linewidth laser system. In order to observe
the ultranarrow transition, the laser linewidth was reduced to less than 1 kHz by tightly
locking it to a high-finesse optical cavity. This transition had never been observed prior
to this study. Hence, we estimated the transition frequency using an optical frequency
comb. The developed laser system and the estimated transition frequency enabled us to
observe the 1S0↔3P2 transition for the first time.

High-resolution spectroscopy of a BEC was thus demonstrated. We successfully de-
tected the mean field shift of a BEC using this ultranarrow optical transition. We observed
not only the large mean field shift in a BEC, but also the change in the lineshape, which
reflects the density distribution of a BEC in a trap. As a result, a12 (the scattering length
between atoms in the 1S0 state and the 3P2 state) was successfully determined from the
observed spectrum. Furthermore, we performed spectroscopy of condensates in 1D optical
lattice potentials and observed the mean field shift due to the on-site interaction at each
site. Since, in the experiments using optical lattice potentials, the hopping energy and
the on-site interaction energy are important parameters, the technique developed in this
study enabled us to measure the on-site interaction energies with high precision in such
experiments.

Furthermore, the polarizabilities of all the magnetic sublevels of the 3P2 state were
determined with high precision. Using an optical frequency comb, we also measured the
frequency of the magnetic-field-insensitive 1S0 ↔ 3P2 (m = 0) transition in 174Yb, which
is one of the candidates for next-generation atomic frequency standards [3].

10.2 Outlook

The 3P2 state and the ultranarrow transition between the 1S0 and the 3P2 states have
great potential for future studies in atomic physics.

As observed in this study, it is true that a large inelastic collision rate leads to a short
trap lifetime of 3P2 atoms even in a FORT. However, to overcome the trap loss due to
inelastic collisions, we can use 3D optical lattice potentials or ultracold fermions, which
do not collide with each other at ultracold temperatures. In particular, as for metastable
3P2 bosons in 3D optical lattice potentials, the number of atoms finally becomes 1 or 0
per site due to strong two-body inelastic collisions. In such a situation, since no collision
shift occurs, it is an ideal system for an atomic clock or for precise measurement.

Using the magnetically sensitive 1S0↔3P2(m = ±1,±2) transitions in a magnetic field
gradient, we can address atoms with ultrahigh spatial resolutions. In addition, considering
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the large scattering length a12 of Yb, we can probe the density distribution of atoms at
any point in a trap with higher precision, compared to experiments using alkaline metal
atoms. Thus, for example, we may be able to probe the density distribution of a phase-
separated mixture of different kinds of condensates. It will also be possible to measure the
on-site interaction energy at any site of optical lattice potentials. Since, in experiments
using optical lattice potentials, the hopping energy and the on-site interaction energy are
important parameters, such a technique must therefore be a powerful tool in experimental
studies of Bose-Hubbard models using optical lattice potentials.

Quantum computing using the dipole-dipole interaction of 3P2 atoms between neigh-
boring sites in optical lattice potentials has been proposed [82, 13]. Now, this is experi-
mentally well within our capability [106]. Using the 1S0↔3P2 transition, we can initialize,
manipulate, and read any qubit (atom) in optical lattice potentials.

The technique of controlling the polarizability of the 3P2 state by an external magnetic
field, as demonstrated in section 7.4.1, also has great potential. We may be able to realize
Stark shift cancellation by only rotating the magnetic field. It may also be possible to
realize a situation where Stark shift cancellation is satisfied both for the 3P0 state and
the 3P2 state simultaneously. This could be done by adjusting the external magnetic field
at the magic wavelength of the 3P0 state. Such a situation must be an ideal system to
compare two atomic clocks under the same circumstances or to test the time-varying fine
structure constant α, [108] because no systematic errors exist in such a system.

In ion trap experiments, cooling of an ion by using an ultranarrow transition with a
combination of quenching processes is a key technique [14]. In the case of neutral atoms,
sideband cooling using the ultranarrow 1S0↔3P2 transition seems to be impossible due to
the different trap shape between the states used for cooling and quenching. However, we
may be able to use a repumping laser, which can immediately quench the 3P2 atoms to the
ground state (see Chapter 6). If the repumping time is considerably shorter than the trap
frequency, it may be possible to make the heating effect negligibly small, thus allowing
the sideband cooling mechanism to work. In addition, Reichenbach and Deutsch have
recently proposed a novel sideband cooling technique using the 1S0↔3P0 clock transition
and hyperfine states in a 171Yb fermionic isotope [15]. Such a technique may be applied
to the 1S0↔3P2 transition.

As for the frequency measurement demonstrated in Chapter 9, we need to further
improve the accuracy. First, the Rb clock should be linked to a GPS signal for a long-
term stability. To improve the short-term stability, the Rb clock may be replaced by,
for example, a hydrogen maser system. Precise measurement of the absolute transition
frequencies of hyperfine states of the 3P2 state in fermionic isotopes in the kilohertz range
will enable us to probe the nuclear magnetic octupole moments [109].

Furthermore, according to [115], the spectral width of I2 molecules becomes narrowest
around 507 nm (∼ 40 kHz [HWHM]). Thus, the 507-nm laser source developed in this
study has great potential as a new portable frequency standard using the narrow iodine
spectra around 507 nm. We demonstrated the spectroscopy of I2 molecules (Appendix
C).
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Appendix A

Calculation of the magic wavelength
of the 3P2 state

For future experiment, we estimated the magic wavelength of the 3P2 state. The calcu-
lation seems not to be reliable in the visible region because we have to include effects
of a lot of upper states. Here, we show the result above 900 nm where such effects
may be small. The calculation was completely same as that in section 4.3. The ma-
trix elements between the (6s6p)3P2 state and the following states are considered [60]:
(5d6s)3D1, (5d6s)3D2, (5d6s)3D3, (5d6s)1D2, (6s7s)

3S1. The linearly polarized FORT and
zero magnetic field are assumed. In Fig. A.1, the calculation results are shown. The
magic wavelength is estimated to be 965 nm for the 3P2(|m| = 1) state and 1030 nm for
the 3P2(|m| = 0) state. In this region, there is no magic wavelength for the 3P2(|m| = 2)
state.
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Figure A.1: Estimation of the magic wavelength of the 3P2 state for linearly polarized
FORT and zero magnetic field.
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Appendix B

Basic theories on an SHG ring cavity

The MOT beam at 556 nm is obtained by a dye laser in our laboratory. In order to use
a dye laser, we (students) have to work very hard; we must change dye and clean up the
cavity almost every week, use Ar ion laser and so on. Thus, the new laser source at 556
nm which is stable and maintenance-free is strongly desired.

The double wavelength of the MOT beam is 1111.3 nm. This wavelength is close to
the wavelength 1.3 µm which is known as zero-dispersion wavelength of the optical fiber.
Recently the 1.3 µm laser is widely used in the field of optical broadband communications.
Thus, many stable commercial lasers around 1 µm are now available.

We use a commercial fiber laser (Koheras or Keopsys) at 1111.3 nm. Its linewidth is
below 100 kHz. In addition, we find that a nonlinear crystal LBO can convert 1111.3 nm
to 555.6 nm efficiently by the proper ring cavity. We can obtain more than 400 mW green
laser and its frequency locking scurvies for more than ten hours.

B.1 Theory of an SHG technique

B.1.1 Wave equation for a nonlinear medium

Let us consider a certain medium in which both averaged charge density and current
density are zero. If the medium is illuminated by a laser beam, atoms and molecules
inside the medium are polarized. Let the density of these induced electric dipoles be
P(r). The electrostatic potential at r generated by P(r) can be written as

φ(r) =
1

4πε0

∫

V

P(r′) · ∇
( 1

|r− r′|
)
dV ′, (B.1)

where V ′ is the volume of considered system. By using

∇′
( P(x′)
|r− r′|

)
=
∇′ ·P(r′)
|r− r′| + P(r′) · ∇′

( 1

|r− r′|
)

(B.2)

and Gauss’s divergence theorem
∮

S

A(r) · n(r)dS =

∫

V

∇ ·A(r)dV (B.3)
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where n(r) is the normal vector at r on S, we can transform (B.1) into

φ(r) = − 1

4πε0

∫

V

∇′ ·P(r′)
|r− r′| dV ′ +

1

4πε0

∫

S

−P(r′) · n′
|r− r′| dS ′. (B.4)

On the other hand, if we assume that, instead of P(r), some charges are distributed inside
V and on the surface S and their distributions are given by ρd(r) in V and wd(r) on S,
the potential can be described as

φ(r) =
1

4πε0

∫

V

ρd(r
′)

|x− x′|dV ′ +
1

4πε0

∫

S

∇′ wd(r
′)

|r− r′|dS ′. (B.5)

Comparing (B.4) to (B.5), we have

ρd(r) = −∇ ·P(r). (B.6)

This equation shows that we can regard induced electric dipoles P(r) as the charge dis-
tribution ρd(r). From the Maxwell equation (∇ · (ε0E) = ρ), we have

∇ · (ε0E) = ρd (B.7)

= −∇ ·P. (B.8)

∴ ∇ · (ε0E + P) = 0, (B.9)

where D ≡ ε0E + P is called dielectric flux density .
In general, P is proportional to E. However, in some mediums like nonlinear crystals

we are considering, the nonlinear components of P plays an important role. In that case,
P can be divided into a linear part PL and nonlinear parts PNL, that is to say,

P = PL + PNL (B.10)

= ε0χ
(1) · E + ε0χ

(2):EE + · · · , (B.11)

where χ(1) is a linear electric susceptibility and χ(k)(k ≥ 2) are nonlinear electric suscep-
tibilities. The electric susceptibility χ(k) is generally a tensor of rank k + 1.

Here we are interested in the second term (ε0χ
(2):EE) in (B.11) because this term

generates the second harmonic light. “:” means applying two vectors E and E to the
tensor of rank 3 (χ(2)). Thus χ(2):EE is a vector. If we represent χ(2):EE by using their
components, it is written as

(χ(2):EE)i = χ
(2)
ijkEjEk (B.12)

where subscripts are contracted. Hence the Maxwell equations in a medium are given by

∇ ·D = 0 (B.13)

∇× E = −∂B

∂t
(B.14)

∇ ·B = 0 (B.15)

∇×H =
∂D

∂t
(B.16)
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We neglect the current density in (B.16) because we assumed that the current density is
0. Since

∇× (∇× E) = ∇(∇ · E)−4E = −4 E (B.17)

∇×
(
− ∂B

∂t

)
= −µ0

∂

∂t
(∇×H) = −µ0

∂2D

∂t2
, (∵ (B.16)) (B.18)

by taking the rotation of (B.14) and using D = ε0E + P, we have

4E = εµ0
∂2E

∂t2
+ µ0

∂2PNL

∂t2
, (B.19)

where ε = ε0(1 + χ(1)). This is the basic wave equation for a medium which includes
nonlinear polarization PNL.

If a nonlinear crystal is illuminated by the electric field Ein, the nonlinear polarization
PNL is induced in the crystal because PNL = ε0χ

(2):EinEin. The physical meaning of
(B.19) is that if PNL exists in the crystal, a certain electric field Eout defined by (B.19)
can exist and this electric field Eout is the second harmonics we want to generate.

B.1.2 Phase matching condition

In the following discussion, details of the calculations of (B.19) are shown. Let us assume
that the incident electric field to a crystal is

Ein(r, t) = E0
ine

i(k·r−ωt). (B.20)

We assume that E0
in doesn’t depend on r because if we compare Ein to the generated

electric field, we always use strong Ein for nonlinear crystals. Because PNL = ε0χ
(2):EinEin,

PNL can be written as

PNL = ε0(χ
(2):E0

inE
0
in)e

i(2k·r−2ωt). (B.21)

In order to examine how the second harmonics will be generated and grow up in the
nonlinear crystal by PNL, let us assume that the expected output electric field Eout is
given by

Eout(r, t) = E0
out(r)e

i(k′·r−2ωt), (B.22)

Notice that k′ does not necessarily correspond with 2k because of the difference of their
indices of refraction in the crystal. For simplicity, we assume that the polarization of Eout

is parallel to x-axis. z-axis is parallel to k. In this case, Eout and PNL are simplified to

Eout
x (z, t) = E0,out

x (z)ei(k′z−2ωt) (B.23)

PNL
x (z, t) = ε0(χ

(2)
xjkE

0,in
j E0,in

k )ei(2kz−2ωt) (B.24)
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Substituting (B.23) and (B.24) for (B.19) gives us

d2E0,out
x

dz2
(z) + 2ik′

dE0,out
x

dz
(z)− k′2E0,out

x (z) = −4εµ0ω
2E0,out

x (z)

−4ε0µ0ω
2(χ

(2)
xjkE

0,in
j E0,in

k )ei(2k−k′)z (B.25)

If PNL
x (z, t) does not exist, the amplitude of Eout

x (z, t) must be constant everywhere.
In other words, by imposing the condition that if PNL

x (z, t) ≡ 0 then Eout
x (z, t) =

E0,out
x (0)e−2iωt, we have

k2 = 4εµ0ω
2. (B.26)

In addition, we assume that E0,out
x does not change within the length of ∼ λ(wavelength),

that is to say,

∣∣∣d
2E0,out

x

dz2
(z)

∣∣∣ ¿
∣∣∣kdE0,out

x

dz
(z)

∣∣∣. (B.27)

From (B.26) and (B.27), (B.25) can be transformed to

dE0,out
x

dz
(z) = i

2µ0ω
2

k
ε0(χ

(2)
xjkE

0,in
j E0,in

k )ei∆kz (B.28)

≡ i
2µ0ω

2

k
p0e

i∆kz, (B.29)

where p0 = ε0(χ
(2)
xjkE

0,in
j E0,in

k ) and ∆k = 2k − k′. This equation can be easily integrated.
Let the length of the crystal L,

E0,out
x (L) =

∫ L

0

dE0,out
x

dz′
(z′)dz′ (B.30)

=
2µ0ω

2p0

k

ei∆kL−1

∆k
(B.31)

= −2µ0ω
2p0

k

(sin(∆kL/2)

∆kL/2

)
Lei∆kL/2 (B.32)

∴ |E0,out
x (L)| =

2µ0ω
2p0L

k

∣∣∣sin(∆kL/2)

∆kL/2

∣∣∣ (B.33)

Note that the relation between incident power Pin and generated power Pout is described
as

Pout ∝ P 2
in (B.34)

because p0 includes square of |E0,in
x |.

In Fig.B.1, |E0,out
x (L)|2 are shown as a function of (∆kL)/2. The condition to obtain

the maximum second harmonics power is

∆k

2
L =

2k − k′

2
L = 0 (B.35)

∴ 2k − k′ = 0 (B.36)
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Figure B.1: Phase matching condition is satisfied at ∆k=0. The vertical axis is normalized
by (2µ0ω

2p0L)/k.

where k′ and k are the wave vectors of the induced polarization and the output electric
field respectively. This condition is called “Phase matching condition”. k′ and k can be
described by the index of refraction n(ω),

k′ = n(2ω)
2ω

c
(B.37)

k = n(ω)
ω

c
. (B.38)

Thus the phase matching condition can be given as

2ω

c
{n(2ω) − n(ω)} = 0 (B.39)

∴ n(2ω) = n(ω), (B.40)

which means that the nonlinear crystals for SHG have to be the same refraction index
for both ω and 2ω. For the purpose of this, birefringent crystals are used. The specific
characteristic of a birefringent crystal is that the crystal has two different refraction indices
for each orthogonal polarization.

As an example, we will consider an uniaxial crystal which has one optic axis (so called
c-axis). In an uniaxial crystal, the beam whose polarization is orthogonal to the c-axis
is called “ordinary beam” and the beam whose polarization is parallel to the c-axis is
called “extraordinary beam”. Let the refraction indices for ordinary and extraordinary
beams no(θ, ω) and ne(θ, ω) respectively, where θ is the angle between c-axis and wave
vector. The nonlinear crystals can be classified by the magnitude relation of ne(θ, ω) and
no(θ, ω). If ne(θ, ω) > no(θ, ω), the crystal is called a “positive uniaxial crystal”. On the
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other hand, if no(θ, ω) > ne(θ, ω), it is called a “negative uniaxial crystal”. For a positive
uniaxial crystal, if one chooses proper θ,

no(2ω1) = ne(ω1) (B.41)

is satisfied. In this case, the input beam should be the extraordinary beam and the output
beam should be the ordinary beam, which is described as (e, e, o). This configuration is
called “Type I phase matching”. The configuration (e, o, e) or (e, o, o) is called “Type II
phase matching”.

B.1.3 CPM and NCPM

Since both ne and no depend on θ, we have to tune the angle of a crystal so that the phase
matching condition is satisfied. This method is called “Critical phase matching”(CPM).
It is true that we can generate the second harmonics by CPM, but CPM has one defect.
If θ 6= 90◦, the direction of the Poynting vector S does not correspond to the direction of
the wave vector k for the extraordinary beam in the crystal. Thus the ordinary and the
extraordinary beams separate as they propagate in the crystal, which leads to the loss of
the conversion efficiency. This effect is called “walk off effect”.

To overcome the walk off effect, “Non-critically phase matching”(NCPM) is used.
The birefringence strongly depends on temperature in some crystals. Hence, the phase
matching condition can be satisfied at θ = 90◦ by tuning a crystal temperature. Since no
walk off effect exists at θ = 90◦, high conversion efficiency can be realized.

For the purpose of just generating SH, CPM is good enough if one can find a proper
crystal. However, if one needs high power second harmonics, NCPM is desirable although
additional temperature control system is required.

B.1.4 Conversion efficiency

In general, we use a CW Gaussian beam to generate a second harmonic. In this case,
Eckardt et al. [110] showed that the conversion efficiency ηCW is given by

ηCW =
Pout(2ω)

P 2
in(ω)

=
2ω2d2

effLk

πε0c3n3
h(B, ξ) (B.42)

= 16π2 d2
effL

ε0cn2λ3
0

h(B, ξ) (for Guassian beam) (B.43)

where Pin(ω) and Pout(2ω) are the powers of the incident fundamental(after surface losses)
and the output second harmonic(before surface losses), c is the speed of light, ω is the
angular frequency of incident fundamental, deff is an effective nonlinear coefficient, L
is a crystal length, and k is the magnitude of the fundamental wave vector of incident
fundamental inside the crystal. In the last equation, k = 2πn/λ0 and ω = 2πc/λ0 where
λ0 is the wavelength of the fundamental incident are used. h(B, ξ) is a function known as
the Boyd and Kleinman focusing factor first introduced in [111]. Here, B and ξ are called
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the walk-off parameter and the focusing parameter, respectively and defined as

B = ρ

√
Lk

2
(B.44)

ξ =
L

kw2
0

=
λ0L

2πnw2
0

, (B.45)

where ρ is the birefringent walk off angle, w0 is the 1/e amplitude radius at the beam
waist. Also, if ξ ¿ 1(weak focusing condition) and

√
πw0/ρ > L (birefringent walk off

aperture length > crystal length), by assuming the perfect phase matching, h(B, ξ) can
be approximated as

h(B, ξ) ' ξ(1− t2

12
+

t4

120
− t6

1344
+ · · ·) (B.46)

where t = 2B
√

2ξ. According to [111], it is proved that h(B, ξ) takes its maximum value
at ξ=2.84 and B=0. In NCPM case, B=0 is always satisfied. Then we should design the
cavity to make ξ close to 2.84.

B.1.5 LBO

Considering that generated 556 nm light by SHG technique will be used for MOT, the
output power is expected to be 200∼300 mW at least. Therefore, NCPM is suitable for
our experiment because it does not suffer from the loss of efficiency caused by the walk-off
effect. We chose an LBO crystal because it can generate 555.6 nm light from 1111 nm
light by Type-I NCPM according to [112] and also has a high damage threshold. Details
about the light source of 111 1nm will be discussed in the next section.

Lithium triborate(LiB3O5, LBO) is a very popular and widely used nonlinear crystal.
LBO is a negative biaxial crystal. According to the catalogue of CRYSTECH Inc., an
LBO crystal has the following specific characteristics.

• Broad transparency range from 160 nm to 2600 nm

• Relatively large effective SHG coefficient (about three times that of KDP)

• High damage threshold (18.9 GW/cm2 at 1053 nm)

• Type-I and Type-II Non-Critical Phase Matching (NCPM) over a wide wavelength
range

We bought two LBO crystals (3×3×7 mm and 3×3×10 mm) from KASTON Inc.(China).
Both sides of crystals are Anti-Reflection coated for 1111nm and 555.6nm light. The
damage threshold of the AR coat is 300∼400 MW/cm2 and reflectivity R of the AR coat
is R < 0.2 % at 532 nm light.
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B.2 Design of the Ring Cavity

The easiest method to generate the second harmonics is to put a nonlinear crystal at the
focal point of the fundamental light. It is true that the second harmonics will be produced
by this method. However it may be very weak due to small conversion efficiency. Thus,
in general, the optical cavity is used to accumulate the power of fundamental light and
we put a nonlinear crystal into the cavity. A Fabry-Pérot resonator and a ring type
resonator is generally used as an optical cavity. For the purpose of generating second
harmonics, a ring type resonator is commonly used. The reason is that the fundamental
light propagates in one direction in the ring type resonator and the generated second
harmonics in nonlinear crystal also travel in the same direction. On the contrary, the
fundamental travels back and forth between two mirrors in a Fabry-Pérot resonator. As
a result of this, the second harmonics are generated in both opposite directions. In order
to use generated second harmonics as much as possible, this is not convenient1. We, then,
decided to use a ring cavity.

In order to design a ring cavity for the SHG, the following two procedures are required.
First, we have to find best parameters related to reflectivities of cavity mirrors which
make ξ close to 2.84. ξ is determined by the Rayleigh length zR of the fundamental
laser at the nonlinear crystal. For the calculation of zR, ABCD matrices are used [113].
Next, by considering the loss rate on the surfaces of mirrors and crystals, the “impedance
matching condition” is examined. By using all these parameters, we can estimate the
SHG conversion efficiency ηSHG and then predict the theoretically expected SHG power.

B.2.1 ABCD matrices

�����������

	
��
��
�

�

�

Figure B.2: Definition of the ray vector.

In order to design the optical system, ABCD matrices are often used [113, 114]. In
this method, every optical element is described by a 2×2 matrix and assembles of such
optics can be represented just by multiplying ABCD matrices of each elements. The most
powerful point of this method is that the change of a Gaussian beam can be traced by

1There exists some methods to efficiently pick up the second harmonics generated in a Fabry-Pérot
cavity by using their polarization.
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using a famous ABCD law. Hence, when we design the optical cavity, this method is often
used to calculate the beam waist, the total cavity length for the stable cavity operation
and so on.

There exist two kinds of ABCD matrices. This makes the situation a little complicated.
The difference is the treatment of the refractive index. In the following discussion, these
two methods will be used parallel. One will be introduced as Kogelnik [113] and the other
is Yariv [114]. As shown in Fig.B.2, a light ray can be defined by

(
x
nθ

)
[Kogelnik],

(
x
θ

)
[Yariv], (B.47)

where x is the position, θ is the angle and n is the refractive index of the medium. This
vector is called a “ray vector”. When this light ray propagates through some optics, ray
vector changes. ABCD matrices describe the relationship between the input ray vector
and the output one.

(
xout

noutθout

)
=

(
A B
C D

) (
xin

ninθin

)
[Kogelnik] (B.48)

(
xout

θout

)
=

(
A B
C D

) (
xin

θin

)
[Yariv], (B.49)
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B.2.2 Examples of ABCD matrices

ABCD matrices are already known for many optical components we usually use. In this
section, I will introduce some ABCD matrices required for our subsequent calculations.

· Propagation d in n medium

�

�
��

�
���

�

���

�
���

Figure B.3: Propagation d in n medium

From Fig.B.3 , the next relation must be satisfied.

θout = θin, xout = xin + dθin (B.50)

Then the ABCD matrix becomes
(

xout

nθout

)
=

(
1 d/n
0 1

)(
xin

nθin

)
[Kogelnik] (B.51)

(
xout

θout

)
=

(
1 d
0 1

)(
xin

θin

)
. [Yariv]

· Entering from n1 medium to n2 medium

�
��

�
���

���
�
���

Figure B.4: Entering from n1 medium to n2 medium
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According to the Snell’s law,

ninθin = noutθout, xout = xin. (B.52)

Then,

(
xout

noutθout

)
=

(
1 0
0 1

)(
xin

ninθin

)
[Kogelnik] (B.53)

(
xout

θout

)
=

(
1 0
0 nin/nout

)(
xin

θin

)
. [Yariv]

· Reflection by curved mirror whose curvature is R

�
��

�
���

�
�

Figure B.5: Reflection by curved mirror whose curvature is R

From Fig.B.5,

tan θout = tan(π + θin − 2φ) = tan(−θin + 2φ)

∴ θout = −θin + 2φ (B.54)

θin − φ =
xin

R
. (B.55)

By substituting (B.55) to (B.54),

θout = θin − 2

R
xin (B.56)

xout = xin. (B.57)

Then the ABCD matrix is derives as follows.
(

xout

nθout

)
=

(
1 0

−2n/R 1

)(
xin

nθin

)
[Kogelnik] (B.58)

(
xout

θout

)
=

(
1 0

−2/R 1

)(
xin

θin

)
. [Yariv]
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B.2.3 ABCD law

There exists a famous and very useful law between ABCD matrices and q-factor of Gaus-
sian beam. This is know as the “ABCD law”. Note that because of the difference of
the definition of the base for ABCD matrices in Kogelnik and Yariv representation, the
ABCD law is also different.

Generally, we can consider the ABCD matrix as a black box. However the next two
equations are always valid.

{
xout = Axin + Bninθin

noutθout = Cxin + Dninθin [Kogelnik]

(B.59){
xout = Axin + Bθin

θout = Cxin + Dθin [Yariv]

Let us introduce the optical ray R which is the vector whose direction is perpendicular to
the wave front. By assuming small θ, we can obtain the next equation.

Rout =
xout

θout

=
Axin + Bninθin( 1

nout

)
(Cxin + Dninθin)

=
nout(ARin + Bnin)

CRin + Dnin

[Kogelnik]

(B.60)

Rout =
xout

θout

=
Axin + Bθin

Cxin + Dθin

=
ARin + B

CRin + D
[Yariv]

As you can easily confirm, R and q-value for Gaussian beam are converted by optical
elements in a same manner. For example, both satisfy the lens equation, and so on. This
means that, we can replace R by q included in above equations.

( qout

nout

)
=

A
( qin

nin

)
+ B

C
( qin

nin

)
+ D

[Kogelnik]

qout =
Aqin + B

Cqin + D
[Yariv] (B.61)

This is the “ABCD law”.
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Kogelnik’s ABCD matrices satisfy one more useful relation2. If we consider the op-
posite propagation with same optical path described by same ABCD matrices, next two
equations must be satisfied.

(
xout

nθout

)
=

(
A B
C D

)(
xin

nθin

)
[from left to right]

(
xin

−nθin

)
=

(
A B
C D

)(
xout

−nθout

)
[from right to left]

This can be possible only for Kogelnik’ base. If we use Yariv’s base, the second equation
is not always satisfied. We can easily see this difference by considering the light which
enters medium n2 from n1.

Applying the inverse matrix to the second equation and comparing two equations with
each other, we get

A = D, AD −BC = 1. (B.62)

Let me repeat that this is not always valid for Yariv’s base.
According to the definition of q-factor of Gaussian beam,

1

q
=

1

r
− i

λ

πw2
. (q−factor) (B.63)

where r is the curvature and w is a spot size.
Let us consider designing the optical cavity by using ABCD matrices. In the stable

optical cavity, a certain ray from some point surely return to the same point with same
q-factor. This means that, qout = qin in (B.61). Therefore by constructing the total
ABCD matrix and solving the quadratic equation, you have complex number q described
by ABCD. According to (B.63), you can estimate the beam curvature from real part of
q, and the imaginary part can be used to calculate the beam waist.

2Yariv’s ABCD matrices also sometimes satisfy the same relation, but not always. Kogelnik’s ABCD
matrices always satisfy this relation.
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B.2.4 Ring cavity

Let us consider a ring cavity as an example. With the aid of ABCD matrices introduced
in the previous sections, the total ABCD matrix for the ring cavity of Fig. B.6 can be
described as3

Figure B.6: The ring cavity for SHG. L is the half length of a nonlinear crystal.

(
1 L
0 1

)(
1 0
0 1/n

)(
1 L2

0 1

)(
1 0

−2/R 1

)(
1 L1 + 2L3 cos α
0 1

)

×
(

1 0
−2/R 1

)(
1 L2

0 1

)(
1 0
0 n

) (
1 L
0 1

)
[Yariv] (B.64)

where R is the curvature of M4 and M3 and n is the refractive index of an LBO crystal.
Note that the direction of the fundamental light is perpendicular to the surface of a
nonlinear crystal and that next equation must be satisfied from the geometrical restriction.

L1 = 2L3 cos α− 2(L + L2). (B.65)

One of the possible designs is shown in Fig. B.7 with some parameters. Calculating the
conversion efficiency ηSHG by using these parameters, (B.43) and parameters in Table.
B.1 gives us

ηSHG = 1.4× 10−4. [W−1] (B.66)

B.2.5 Enhancement factor

In [110], Eckardt et al. showed that the ratio of the fundamental power incident on the
ring cavity P1 and the fundamental power reflected from the cavity Pr is written as

Pr

P1

=
(
√

r1 −√rm)2

(1−√r1rm)2
, (B.67)

3Starting point is the center of the SHG crystal.
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M1 (Flat Mirror)

M2 (Flat Mirror)

M3 (Concave Mirror R = 50mm )
M4 (Concave Mirror R = 50mm)

Thermal Isolator (Teflon)

PZT
Collimation Lens (f = 15mm)

Lock System

LBO Crystal 
(Crystal Length: 7mm  ~373K)

Incident Beam
(1W  1111nm)

Oven

[Mirror Coating]

M1     R = 99.7% @ λ1      AR @ λ1 

Left Side Right Side

           M2             N/A             100% @ λ1 
M3      R = 100% @ λ1      AR @ λ1 
M4          AR @ λ2            R = 100% @ λ1 
                                                &   AR @ λ2 (Dichroic Mirror)

( λ1 =1111nm  λ2 = 556nm )

Monitor

SHG Beam
(300mW 556nm)

M1 - M2      140mm
M2 - M3      100mm
M3 - M4      58.0mm
Total            398mm
Incident Angle    8 degree
Beam Waist in the Crystal   33.9µm
Rayleigh Length   3.0mm
Boyd-Kleinman Coeff. ξ    0.73

Figure B.7: One of the possible designs. The calculated output power is 300∼400mW.

where r1 is the power reflection coefficient of the cavity mirror M1 (see Fig.B.7), rm is
called a cavity reflectance parameter and defined as

rm = TtSGr2, (B.68)

where tSG(= (1− ηSHGPc)) is the crystal transmission. Pc is the circulating fundamental
power just inside the first mirror M1. r2 is the power reflection coefficient of the ring
cavity mirrors M2, M3 and M4. T is the single-pass power transmission coefficient which
does not include Pc and r2.

From (B.67) and (B.68), we can achieve Pr=0 by choosing proper r1 which satisfies
r1 = rm. This condition is called “impedance matching condition”. When this condition
is satisfied, the maximum Pc is achieved. Therefore we have to carefully choose the
reflectivity of M1.

To determine Pc for given P1, we can use the next equation given in [110].

Pc

P1

=
1− r1

(1−√r1rm)2
. (B.69)

Since rm is a function of Pc, we can calculate Pc as a function of r1.
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B.2.6 Numerical computations for 1111.3→556 nm, and 798→399
nm system

Now we can estimate the expected SHG power of designed system. For the purpose of
numerical calculations, we use (B.43). In TableB.1, required parameters are listed. I
also calculated the theoretically expected values for the LAS system. LAS is used in our
laboratory to convert 798 nm to 399 nm.

Table B.1: Parameters for SHG systems in our laboratory(1111.3 nm→555.6 nm and 798
nm→399 nm). λ0 and P0 are the wavelength and incident power of fundamental light, n
is the refractive index for the fundamental light, Lcrystal is the crystal length, zR and w0

are the Rayleigh length and the beam waist of the fundamental light at the crystal, deff

is the effective nonlinear coefficient, h is the Boyd-Kleinman coefficient, and ηSHG is the
SHG conversion efficiency.

Fiber laser LAS

λ0 (nm) 1111.3 798

P0(W) 1 1

n 1.56 1.61

Lcrystal = 2L (mm) 7 12

zR(mm) 3.0 10.5

w0 (µm) 33.9 51.6

deff (pm/V) 1.24 0.75

h(B, ξ) 0.73 0.36

ηSHG(×10−4W−1) 1.4 1.1
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Figure B.8: Theoretically expected SHG power for 1111.3→556nm SHG system[NCPM,
Type-I]. P0=1W, w0 = 33.9µm, Lcrystal(Crystal length)=7mm.
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Figure B.9: Theoretically expected SHG power for 798→399nm SHG system[CPM, Type-
I]. P0=1W, w0 = 51.6µm, Lcrystal(Crystal length)=12mm.
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Appendix C

Iodine spectroscopy at 507 nm

Figure C.1: Ultranarrow “compact” laser system at 507 nm developed in this study. All
components are installed on an optical table of 90×120 cm.

According to the [115], the spectral width of iodine molecules becomes narrowest
around 507 nm. Thus, our compact laser system (see Fig. C.1) has possibility of a
future high performance transportable frequency reference. We therefore demonstrate
spectroscopy of iodine molecules using the developed laser system.

We first performed absorption spectroscopy of iodine molecules. Observed spectra
over 50 GHz are shown in Fig. C.2 . The amplitude is normalized so that distortions
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of the signal due to power fluctuations are removed. The numbers labeled to some of
the spectra in Fig. C.2(Bottom) correspond to those in [116]. In addition, the detailed
spectrum of one of the lines in No. 1388 resonance in Fig. C.2(Bottom) was obtained via
saturation spectroscopy as shown in Fig. C.3. The spectrum in Fig. C.3 is broadened by
saturation broadening and residual Doppler broadening due to the slight misalignment
between the pump and probe lasers in saturation spectroscopy. Further development of
the system toward high-resolution spectroscopy of iodine molecules using, for example,
the modulation transfer technique [117, 118] is now in progress.
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Figure C.2: Absorption spectroscopy of iodine molecules over the 50 GHz around 507 nm.
Some of resonances are identified to those in [116] and labeled with the corresponding
numbers.
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Figure C.3: Detailed spectra of one of the lines in No.1388 resonance in Fig. C.2 taken
by saturation spectroscopy.
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Appendix D

Spherical harmonics and vector
spherical harmonics

Some spherical harmonics and vector spherical harmonics used in this work are listed
below 1.

(D.2)

Spherical harmonics rLYL,M(θ, φ)

Y0,0(θ, φ) =

√
1

4π

rY1,0(θ, φ) =

√
3

4π
r
(1)
0 , rY1,±1(θ, φ) =

√
3

4π
r
(1)
±1

r2Y2,0(θ, φ) =

√
5

4π

3

2

(
(r

(1)
0 )2 − r2

3

)

r2Y2,±1(θ, φ) =

√
5

4π

√
3 r

(1)
0 r

(1)
±1, r2Y2,±2(θ, φ) =

√
5

4π

√
3

2

(
r
(1)
±1

)2

r3Y3,0 =

√
7

4π

1

2
r
(1)
0 (5(r

(1)
0 )2 − 3r2)

r3Y3,±1 =

√
7

4π

√
3

8
r
(1)
± (5(r

(1)
0 )2 − r2), r3Y3,±2 =

√
7

4π

√
15

2
r
(1)
0 (r

(1)
± )2

r3Y3,±3 =

√
7

4π

√
5

2
(r

(1)
± )3

1First rank irreducible tensor r
(1)
q (q = −1, 0,+1) are given by

r
(1)
±1 = ∓ 1√

2
(x± iy), r

(1)
0 = z. (D.1)



Vector spherical harmonics YL,J,M(θ, φ)

Y0,1,0 =

√
1

3
(Y1,−1ê+1 − Y1,0ê0 + Y1,1ê−1)

Y1,0,±1 = Y0,0ê±1, Y1,0,0 = Y0,0ê0

Y1,1,±1 = ±
√

1

2
(Y1,±1ê0 − Y1,0ê±1) Y1,1,0 =

√
1

2
(Y1,1ê−1 − Y1,−1ê+1)

Y1,2,±1 =

√
1

10
(Y2,0ê±1 −

√
3Y2,±1ê0 +

√
6Y2,±2ê∓1)

Y1,2,0 =

√
1

10
(
√

3Y2,−1ê+1 − 2Y2,0ê0 +
√

3Y2,1ê−1)

Y2,1,±2 = Y1,±1ê±1, Y2,1,±1 =

√
1

2
(Y1,0ê±1 + Y1,±1ê0)

Y2,1,0 =

√
1

6
(Y1,−1ê+1 + 2Y1,0ê0 + Y1,1ê−1)

Y2,2,±2 = ±
√

1

3
(
√

2Y2,±2ê0 − Y2,±1ê±1)

Y2,2,±1 = ∓
√

1

6
(
√

3Y2,0ê±1 − Y2,±1ê0 −
√

2Y2,±2ê∓1)

Y2,2,0 =

√
1

2
(Y2,1ê−1 − Y2,−1ê+1)

Y2,3,0 =

√
1

7
(
√

2Y3,1ê−1 −
√

3Y3,0ê0 +
√

2Y3,−1ê+1)

Y2,3,±1 =

√
1

21
(
√

3Y3,0ê±1 −
√

8Y3,±1ê0 +
√

10Y3,±2ê∓1)

Y2,3,±2 =

√
1

21
(Y3,±1ê±1 −

√
5Y3,±2ê0 +

√
5Y3,±3ê∓1)
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garno,
“Suppression of Angular Forces in Collisions of Non-S-State Transition Metal
Atoms”,
Phys. Rev. Lett. 94, 013202 (2005).

[24] Yosuke Takasu, Kenichi Maki, Kaduki Komori, Tetsushi Takano, Kazuhito Honda,
Mitsutaka Kumakura, Tsutomu Yabuzaki, and Yoshiro Takahashi,
“Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms”,
Phys. Rev. Lett. 91, 040404 (2003).

[25] T. Fukuhara, S. Sugawa, and Y. Takahashi,
“Bose-Einstein condensation of an ytterbium isotope”,
Phys. Rev. A 76, 051604R (2007).

[26] T. Fukuhara, Y. Takasu, M. Kumarkua, and Y. Takahashi,
“Degenerate Fermi Gases of Ytterbium”,
Phys. Rev. Lett. 98, 030401 (2007).

[27] T. Fukuhara, Y. Takasu, S. Sugawa and Y. Takahashi,
“Quantum Degenerate Fermi Gases of Ytterbium Atoms”,
J. Low. Temp. Phys. 148 441 (2007).

[28] Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi,
“Photoassociation Spectroscopy of Laser-Cooled Ytterbium Atoms”,
Phys. Rev. Lett. 93, 123202 (2004).

[29] S. Tojo, M. Kitagawa, K. Enomoto, Y. Kato, Y. Takasu, M. Kumakura, and Y.
Takahashi,
“High-Resolution Photoassociation Spectroscopy of Ultracold Ytterbium Atoms by
Using the Intercombination Transition”,
Phys. Rev. Lett. 96, 153201 (2006).



BIBLIOGRAPHY 171

[30] K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, and Y. Takahashi,
“Determination of the s-Wave Scattering Length and the C6 van der Waals Coefficient
of 174Yb via Photoassociation Spectroscopy”,
Phys. Rev. Lett. 98, 203201 (2007).

[31] M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. CiuryÃlo, P. Naidon, and P. S.
Julienne,
“Two-color photoassociation spectroscopy of ytterbium atoms and the precise deter-
minations of s-wave scattering lengths”,
Phys. Rev. A 77, 012719 (2008).

[32] Z. Barber,
“Ytterbium Optical lattice Clock”,
PhD thesis, University of Colorado, 2007.

[33] A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L.
Hollberg
“Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Appli-
cation to Lattice-Based Optical Atomic Clocks”
Phys. Rev. Lett. 96, 083001 (2006).

[34] C. W. Hoyt, Z. W. Barber, C. W. Oates, T. M. Fortier, S. A. Diddams, and L.
Hollberg
“Observation and Absolute Frequency Measurements of the 1S0-

3P0 Optical Clock
Transision in Neutral Ytterbium”
Phys. Rev. Lett. 95, 083003 (2005).

[35] Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I.
Yudin
“Direct Excitation of the Forbidden Clock Transition in Neutral 174Yb Atoms Con-
fined to an Optical Lattice”
Phys. Rev. Lett. 96, 083002 (2006).

[36] Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki,
“Quantum nondemolition measurement of spin via the paramagnetic Faraday rota-
tion”,
Phys. Rev. A 60, 4974 (1999).

[37] D. DeMille,
“Parity Nonconservation in the 6s21S0→6s5d3D1 Transition in Atomic Ytterbium”,
Phys. Rev. Lett. 74, 4165 (1995).

[38] M. Fujimoto,
“永久電気双極子モーメント検出のためのYb原子のレーザー冷却”(in Japanese),
Master thesis, Kyoto University, 1997.



BIBLIOGRAPHY 172

[39] J. E. Sansonetti, W. C. Martin, and S. L. Young,
Handbook of Basic Atomic Spectroscopic Data,
NIST, 2005.
http://physics.nist.gov/Handbook

[40] NIST Atomic Spectra Database,
http://physics.nist.gov/PhysRefData/Elements/index.html

[41] D. Das, S. Barthwal, A. Banerjee, and V. Natarajan,
“Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts
and hyperfine structure in the 399-nm 1S0→1P1 line”,
Phys. Rev. A 72, 032506 (2005).

[42] D. L. Clark, M. E. Cage, D. A. Lewis, and G. W. Greenlees,
“Optical isotopic shifts and hyperfine splittings for Yb”,
Phys. Rev. A 20, 239 (1979).

[43] K. Honda, Y. Takasu, T. Kuwamoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki,
“Optical dipole force trapping of a fermion-boson mixture of ytterbium isotopes”,
Phys. Rev. A 66, 021401 (2002).

[44] T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki,
“Magneto-optical trapping of Yb atoms using an intercombination transition”,
Phys. Rev. A 60, R745 (1999).

[45] T. Fukuhara,
“量子シミュレーションに向けたイッテルビウム原子のフェルミ縮退の実現” (in
Japanese),
Master thesis, Kyoto University, 2005.

[46] L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic,
W. König and T. W. Hänsch,
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