Quantum Simulation Using Ytterbium Atoms in an Optical Lattice

Takeshi Fukuhara¹, Seiji Sugawa¹, Takuya Tsujimoto¹, Yosuke Takasu¹, and Yoshiro Takahashi^{1,2} Kyoto University¹, JST-CREST²

TOF=10m

BFC

160 u m

"BEC-BEC mixture"

 $N_{176} = 1 \times 10^{4}$

PSD₁₇₆>2.6

Position (un

TOF=8ms

120 m

MOT Atom Number : ~ 10⁷ Temperature: 15 ~ 40µK Atom Density: 10¹²cm⁻³ gravity Vertical FORT Beam wais: 85 µr Potential depth: 1

efficient evaporative cooling

Quantum degenerate mixture

Ultracold atomic gases system is quite suitable for understanding quantum many-body system and one unique feature of this system is that a variety of mixtures can be investigated.

Scattering lengths for Yb isotopic combinations are evaluated by photoassociation spectroscopy and mass scaling.

	++++ 7.7	imys.	ine allo	PRYS-	10033	ineith-	tree A.P.
unde unde unde unde unde unde unde unde	13-33(18)	6.15(3) 3.38(11)	472(9) L00(13) -0.15(19)	1.44(10) -0.11(19) -4.40(36) -31.7(3.4)	204(13) -4.30(36) -36.6(3.2) 22.1(7) 10.05(11)	0.13(15) -27.4(3.7) 22.7(7) 10.61(12) 7.34(%) 3.55(8)	-15.0(1.0) 11.09(12) 7.49(9) 5.62(9) 4.22(10) 2.58(12) -1.39(23)
	[Kita	agawa, <i>et a</i>	arXiv:0708	3.07521			

Quadrupolar Oscillations

We excited quadrupolar oscillations in a Bose-Fermi mixture of 174 Yb. 173 Yb by changing trapping potential and observed oscillations of 174 Yb BEC with/without 173 Yb atoms.

When we mixed ¹⁷³Yb atoms, a delay of the oscillations was observed.

Summary

- Production of a variety of degenerate gases and mixtures of Yb isotopes
- Loading ¹⁷⁴Yb BEC into 1D optical lattices Interference patterns Number squeezing Mixing Fermionic inpurity
- Observation of 1st Brillouin Zone
- · Calibration of the lattice potential by pulsed lattice
- Investigating collective oscillations in a Bose-Fermi mixture

Future plan

- Realizing BEC and degenerate Fermi gas in 3D optical lattice and observing the Mott-insulator transition
- Further cooling in optical lattices (Sideband cooling)
- Investigating behavior of Bose-Fermi mixture in optical lattices
- Understanding mixtures of quantum many-body system Stability (collapse), Structure (phase separation), and Dynamics (collective mode)